分类识别是人类最重要的基本活动之一,在人类的日常生活、社会活动、科研生产以及学习、工作中无时无处不在进行着分类识别。模式识别是研究分类识别理论和方法的科学,是一门综合性、交叉性学科。在理论上它涉及代数学、矩阵论、概率论、图论、模糊数学、最优化理论等等众多学科的知识,在应用上又与其他许多领域的工程技术密切相关,其内涵可以概括为信息处理、分析与决策,它既是人工智能研究领域的重要分支,又是实现机器智能必不可少的技术手段。该学科的理论任务是运用一切相关科技研发分类识别的理论和方法,而其应用目标是创造能进行分类识别决策的智能机器系统以代替人类的分类识别工作。自80年代以来,它始终受到学术界和各应用领域的极大重视,计算机软、硬件技术的日臻成熟及其他相关学科的迅速发展更使它成为理论研究和技术开发的热门学科,其重要的学术价值和广泛的应用范围使得人们越来越认识到该课程的重要性,也吸引了各领域的科研人员投入极高的学习热情。近十几年来,与模式识别相关的理论专著、论文、科研成果层出不穷,使得该学科得以丰富和发展,形成了许多大类的模式识别理论、方法。但是现在多数著作只涉及一至两类模式识别知识的介绍,多学科、多视角、多层次地介绍该学科知识的著作不多,能兼顾教学使用和科研参考的高校教材也较少,因此有必要将该学科涉及到的基本理论、基本方法原理以及当代发展成熟的理论技术进行沉淀、提炼、归纳、整合,让读者能较系统地掌握本学科的理论精髓,较全面地了解和掌握相关技术,这也正是我们撰写本书的初衷和希望本书能实现的目标。