注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学统计物理学(第1卷)

统计物理学(第1卷)

统计物理学(第1卷)

定 价:¥40.00

作 者: 美M.Toda等著
出版社: 世界图书出版公司北京公司
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787506233958 出版时间: 1997-01-01 包装: 胶版纸
开本: 20cm 页数: 252页 字数:  

内容简介

  The subject itself has progressed considerably in recent years, especially in relation to the theory of phase changes and various aspects of the ergodic problems. In order to include recent developments of the theory of phase changes, more than half of Chap. 4 has been rewritten. It is hoped that the inclusionof additional material will elucidate the current point of view and the new methods employed in this fascinating branch of statistical physics. Chapter 5, which is devoted to the ergodic problems, has been fully revised to present contemporary knowledge of the ergodic behavior of mechanical systems, which has been actively investigated in the last few years by means of mathematical analysis, supported by numerical computation. The authors have also taken advantage of the opportunity to correct typographical errors, and to revise some figures.

作者简介

暂缺《统计物理学(第1卷)》作者简介

图书目录

1.GeneralPreliminaries
1.1Overview
1.1.1SubjectsofStatisticalMechanics
1.1.2ApproachtoEquilibrium
1.2Averages
1.2.1ProbabilityDistribution
1.2.2AveragesandThermodynamicFluctuation
1.2.3AveragesofaMechanicalSystem-VidalTheorem
1.3TheLiouvilleTheorem
1.3.1DensityMatrix
1.3.2ClassicalLiouville'sTheorem
1.3.3Wigner'sDistributionFunction
1.3.4TheCorrespondenceBetweenClassicalandQuantumMechanics
2.OutlinesofStatisticalMechanics
2.1ThePrinciplesofStatisticalMechanics
2.1.1ThePrincipleofEqualProbability
2.1.2MicrocanonicalEnsemble
2.1.3Boltzmann'sPrinciple
2.1.4TheNumberofMicroscopicStates,ThermodynamicLimit
a)AFreeParticle
b)AnIdealGas.
c)SpinSystem
d)TheThermodynamicLimit
2.2Temperature
2.2.1TemperatureEquilibrium
2.2.2Temperature
2.3ExternalForces
2.3.1PressureEquilibrium
2.3.2AdiabaticTheorem
a)AdiabaticChange
b)AdiabaticTheoreminStatisticalMechanics
c)AdiabaticTheoreminClassicalMechanics
2.3.3ThermodynamicRelations
2.4SubsystemswithaGivenTemperature
2.4.1CanonicalEnsemble
2.4.2Boltzmann-Planck'sMethod
2.4.3SumOverStates
2.4.4DensityMatrixandtheB!ochEquation
2.5SubsystemswithaGivenPressure
2.6SubsystemswithaGivenChemicalPotential
2.6.1ChemicalPotential
2.6.2GrandPartitionFunction
2.7FluctuationandCorrelation
2.8TheThirdLawofThermodynamics,Nernst'sTheorem
2.8.1MethodofLoweringtheTemperature
3.Applications
3.1QuantumStatistics
3.1.1Many-ParticleSystem
3.1.2OscillatorSystems(PhotonsandPhonons)
3.1.3BoseDistributionandFermiDistribution
a)DifferenceintheDegeneracyofSystems
b)ASpecialCase
3.1.4DetailedBalancingandtheEquilibriumDistribution
3.1.5EntropyandFluctuations
3.2IdealGases.
3.2.1LevelDensityofaFreeParticle
3.2.2IdealGas
a)AdiabaticChange
b)HighTemperatureExpansion
c)DensityFluctuation
3.2.3BoseGas
3.2.4FermiGas
3.2.5RelativisticGas
a)PhotonGas
b)FermiGas
c)ClassicalGas
3.3ClassicalSystems
3.3.1QuantumEffects'andClassicalStatistics
a)ClassicalStatistics
b)LawofEquipartitionofEnergy
3.3.2Pressure
3.3.3SurfaceTension
3.3.4ImperfectGas
3.3.5ElectronGas
3.3.6Electrolytes
4.PhaseTransitions
4.1Models
4.1.1ModelsforFerromagnetism
4.1.2LatticeGases
4.1.3CorrespondenceBetweentheLatticeGasandtheIsingMagnet
4.1.4SymmetricPropertiesinLatticeGases
4.2AnalyticityofthePartitionFunctionandThermodynamicLimit
4.2.1ThermodynamicLimit
4.2.2ClusterExpansion
4.2.3ZerosoftheGrandPartitionFunction
4.3One-DimensionalSystems
4.3.1ASystemwithNearest-NeighborInteraction
4.3.2LatticeGases
4.3.3Long-RangeInteractions
4.3.4OtherModels
4.4IsingSystems
4.4.1Nearest-NeighborInteraction
a)One-DimensionalSystems
b)Many-DimensionalSystems
c)Two-DimensionalSystems
d)CuriePoint
4.4.2MatrixMethod
a)One-DimensionalIsingSystem
b)Two-DimensionalIsingSystems
4.4.3ZerosontheTemperaturePlane
4.4.4SphericalModel
4.4.5Eight-VertexModel
4.5ApproximateTheories
4.5.1MolecularFieldApproximation,WeissApproximation
4.5.2BetheApproximation
4.5.3LowandHighTemperatureExpansions
4.6CriticalPhenomena.
4.6.1CriticalExponents
4.6.2PhenomenologicalTheory
4.6.3Scaling
4.7RenormalizationGroupMethod
4.7.1RenormalizationGroup
4.7.2FixedPoint
4.7.3CoherentAnomalyMethod
5.ErgodicProblems
5.1SomeResultsfromClassicalMechanics
5.1.1TheLiouvilleTheorem
5.1.2TheCanonicalTransformation
5.1.3ActionandAngleVariables
5.1.4IntegrableSystems
5.1.5Geodesics
5.2ErgodicTheorems(I)
5.2.1Birkhoff'sTheorem
5.2.2MeanErgodicTheorem
5.2.3Hopf'sTheorem
5.2.4MetricalTransitivity
5.2.5Mixing
5.2.6Khinchin'sTheorem
5.3AbstractDynamicalSystems
5.3.1BernoulliSchemesandBaker'sTransformation
5.3.2ErgodicityontheTorus
5.3.3K-Systems(KolmogorovTransformation)
5.3.4C-Systems
5.4ThePoincareandFermiTheorems
5.4.1Bruns'Theorem
5.4.2Poincare-Fermi'sTheorem
5.5Fermi-Pasta-Ulam'sProblem
5.5.1NonlinearLatticeVibration.
5.5.2ResonanceConditions
5.5.3InductionPhenomenon
5.6ThirdIntegrals
5.7TheKolmogorov,Arnol'dandMoserTheorem
5.8ErgodicTheorems(II)
5.8.1WeakConvergence
5.8.2Ergodicity
5.8.3EntropyandIrreversibility
5.9QuantumMechanicalSystems
5.9.1TheoremsinQuantumMechanicalSystems
5.9.2ChaoticBehaviorinQuantumSystems
5.9.3CorrespondenceBetweenClassicalandQuantumChaos
5.9.4QuantumMechanicalDistributionFunction
GeneralBibliography
References
SubjectIndex

本目录推荐