前言
第一章有限城
1有限域的结构
2有限域的扩张
3特征标
4有限域上的特征标及GaUSS和
5Davenport-Hasse等式
参考文献
第二章Weil猜想
1有限域上方程的解数
2Weil猜想
3Weil猜想的上同调解释
4zeta函数的Euler积
参考文献
第三章局部域和整体域
1赋值和局部域
2赋值的扩张
3阿代尔和伊代尔
参考文献
第四章Riemann-Roch定理
1限制直积的特征标
2标准加法特征标
3对偶
4memann-Roch定理
5有限域上曲线点的个数的计算
参考文献
第五章Zeta函数和乙-函数
1伊代尔类特征标的占·函数
2Fourier变换
3Z(s,X,)的解析开拓和函数方程
4K的zeta函数(定理1的证明)
5具有非平凡特征标X的上-函数L(s,X)(定理2的证明)
参考文献
第六章特征和估计与伊代尔类特征标
1L-函数的根
2Weil的特征和估计
3特征和的估计
4一般形式的Davenport-Hasse等式
5曲线的zeta函数
参考文献
第七章模形式理论
1模形式
2Hecke算子
3空间M(N,k,X)的结构
4函数方程
参考文献
第七章附录:模形式的构造
1.全模群上的模形式
2.同余子群上的模形式
3.theta级数
附加参考文献
第八章自守形式和自守表示
1守形式
2F是非Archimedes局部域时GL2(F)的表示
3F是Archimedes局部域时GL2(F)的表示
4GL2的自守表示
5四元数群的表示
参考文献
第九章应用
1扩展图,Kazhdan性质T和特征值
2正则图的谱
3由四元数群构造Ramanujan图
4由有限交换群构造Ramanujan图
5由有限非交换群构造Ralilanujan图
6Alon-Boppana定理的两个证明
7极限分布
8在p处具有整特征值尖点形式空间维数大小的估计
参考文献
索引