O.Preliminaries
1.SetTheory
2.TopologicalSpaces
3.MeasureSpaces
4.LinearSpaces
I.Semi-norms
1.Semi-normsandLocallyConvexLinearTopologicalSpaces.
2.NormsandQuasi-norms
3.ExamplesofNormedLinearSpaces
4.ExamplesofQuasi-normedLinearSpaces
5.Pre-HilbertSpaces
6.ContinuityofLinearOperators
7.BoundedSetsandBornologicSpaces
8.GeneralizedFunctionsandGeneralizedDerivatives
9.B-spacesandF-spaces
10.TheCompletion
11.FactorSpacesofaB-space
12.ThePartitionofUnity
13.GeneralizedFunctionswithCompactSupport
14.TheDirectProductofGeneralizedFunctions
II.ApplicationsoftheBaire-HausdorffTheorem
1.TheUniformBoundednessTheoremandtheResonanceTheorem
2.TheVitali-Hahn-SaksTheorem
3.TheTermwiseDifferentiabilityofaSequenceofGeneralized
Functions
4.ThePrincipleoftheCondensationofSingularities
5.TheOpenMappingTheorem
6.TheClosedGraphTheorem
7.AnApplicationoftheClosedGraphTheorem(H6rmander'sTheorem)
III.TheOrthogonalProjectionandF.Riesz'RepresentationTheorem
1.TheOrthogonalProjection
2."NearlyOrthogonal"Elements
3.TheAscoli-ArzelaTheorem
4.TheOrthogonalBase.Bessel'sInequalityandParseval'sRelation
5.E.Schmidt'sOrthogonalization
6.F.Riesz'RepresentationTheorem
7.TheLax-MilgramTheorem
8.AProofoftheLebesgue-NikodymTheorem
9.TheAronszajn-BergmanReproducingKernel
10.TheNegativeNormofP.LAX
11.LocalStructuresofGeneralizedFunctions
IV.TheHahn-BanachTheorems
1.TheHahn-BanachExtensionTheoreminRealLinearSpaces
2.TheGeneralizedLimit
3.LocallyConvex,CompleteLinearTopologicalSpaces
4.TheHahn-BanachExtensionTheoreminComplexLinearSpaces
5.TheHahn-BanachExtensionTheoreminNormedLinearSpaces
6.TheExistenceofNon-trivialContinuousLinearFunctionals
7.TopologiesofLinearMaps
8.TheEmbeddingofXinitsBidualSpaceX"
9.ExamplesofDualSpaces
V.StrongConvergenceandWeakConvergence
1.TheWeakConvergenceandTheWeak*Convergence
2.TheLocalSequentialWeakCompactnessofReflexiveB-
spaces.TheUniformConvexity
3.Dunford'sTheoremandTheGelfand-MazurTheorem
4.TheWeakandStrongMeasurability.Pettis'Theorem
5.Bochner'sIntegral
AppendixtoChapterV.WeakTopologiesandDualityinLocally
ConvexLinearTopologicalSpaces
1.PolarSets
2.BarrelSpaces
3.Semi-reflexivityandReflexivity
4.TheEberlein-ShmulyanTheorem
VI.FourierTransformandDifferentialEquations
1.TheFourierTransformofRapidlyDecreasingFunctions
2.TheFourierTransformofTemperedDistributions
3.Convolutions
4.ThePaley-WienerTheorems.TheOne-sidedLaplaceTransform
5.Titchmarsh'sTheorem
6.Mikusinski'sOperationalCalculus
7.Sobolev'sLemma
8.Garding'sInequality
9.Friedrichs'Theorem
10.TheMalgrange-EhrenpreisTheorem
11.DifferentialOperatorswithUniformStrength
12.TheHypoellipticity(Hormander'sTheorem)
VII.DualOperators
1.DualOperators
2.AdjointOperators
3.SymmetricOperatorsandSelf-adjointOperators
4.UnitaryOperators.TheCayleyTransform
5.TheClosedRangeTheorem
VIII.ResolventandSpectrum
1.TheResolventandSpectrum
2.TheResolventEquationandSpectralRadius
3.TheMeanErgodicTheorem
4.ErgodicTheoremsoftheHilleTypeConcerningPseudoresolvents
5.TheMeanValueofanAlmostPeriodicFunction
6.TheResolventofaDualOperator
7.Dunford'sIntegral
8.TheIsolatedSingularitiesofaResolvent
IX.AnalyticalTheoryofSemi-groups
1.TheSemi-groupofClass(Co)
2.TheEqui-continuousSemi-groupofClass(Co)inLocally
CofivexSpaces.ExamplesofSemi-groups
3.TheInfinitesimalGeneratorofanEqui-continuousSemigroupofClass(Co)
4.TheResolventoftheInfinitesimalGeneratorA
5.ExamplesofInfinitesimalGenerators
6.TheExponentialofaContinuousLinearOperatorwhose
PowersareEqui-continuous
7.TheRepresentationandtheCharacterizationofEqui-con-
tinuousSemi-groupsofClass(Co)inTermsoftheCorre-
spondingInfinitesimalGenerators
8.ContractionSemi-groupsandDissipativeOperators
9.Equi-continuousGroupsofClass(Co).Stone'sTheorem
10.HolomorphicSemi-groups
11.FractionalPowersofClosedOperators
12.TheConvergenceofSemi-groups.TheTrotter-KatoTheorem
13.DualSemi-groups.Phillips'Theorem
X.CompactOperators
1.CompactSetsinB-spaces
2.CompactOperatorsandNuclearOperators
3.TheRellich-GardingTheorem
4.Schauder'sTheorem
5.TheRiesz-SchauderTheory
6.Dirichlet'sProblem
AppendixtoChapterX.TheNuclearSpaceofA.GROTHENDIECK
XI.NormedRingsandSpectralRepresentation
1.MaximalIdealsofaNormedRing
2.TheRadical.TheSemi-simplicity
3.TheSpectralResolutionofBoundedNormalOperators
4.TheSpectralResolutionofaUnitaryOperator
5.TheResolutionoftheIdentity
6.TheSpectralResolutionofaSelf-adjointOperator
7.RealOperatorsandSemi-boundedOperators.Friedrichs'Theorem
8.TheSpectrumofaSelf-adjointOperator.Rayleigh'sPrin-
ciple,andtheKrylov-WeinsteinTheorem.TheMultiplicity
oftheSpectrum
9.TheGeneralExpansionTheorem.AConditionforthe
AbsenceoftheContinuousSpectrum
10.ThePeter-Weyl-NeumannTheorem
11.Tannaka'sDualityTheoremforNon-commutativeCompactGroups
12.FunctionsofaSelf-adjointOperator
13.Stone'sTheoremandBochner'sTheorem
14.ACanonicalFormofaSelf-adjointOperatorwithSimpleSpectrum
15.TheDefectIndicesofaSymmetricOperator.TheGeneralized
ResolutionoftheIdentity
16.TheGroup-ringL1andWiener'sTauberianTheorem
XII.OtherRepresentationTheoremsinLinearSpaces
1.ExtremalPoints.TheKrein-MilmanTheorem
2.VectorLattices
3.B-latticesandF-lattices
4.AConvergenceTheoremofBANACH
5.TheRepresentationofaVectorLatticeasPointFunctions
6.TheRepresentationofaVectorLatticeasSetFunctions
XIII.ErgodicTheoryandDiffusionTheory
1.TheMarkovProcesswithanInvariantMeasure
2.AnIndividualErgodicTheoremandItsApplications
3.TheErgodicHypothesisandtheH-theorem
4.TheErgodicDecompositionofaMarkovProcesswitha
LocallyCompactPhaseSpace
5.TheBrownianMotiononaHomogeneousRiemannianSpace
6.TheGeneralizedLaplacianofW.FELLER
7.AnExtensionoftheDiffusionOperator
8.MarkovProcessesandPotentials
9.AbstractPotentialOperatorsandSemi-groups
XIV.TheIntegrationoftheEquationofEvolution
1.IntegrationofDiffusionEquationsinL2(Rm)
2.IntegrationofDiffusionEquationsinaCompactRiemannianSpace
3.IntegrationofWaveEquationsinaEuclideanSpaceRm
4.IntegrationofTemporallyInhomogeneousEquationsof
EvolutioninaB-space
5.TheMethodofTANABEandSOBOLEVSKI
6.Non-linearEvolutionEquations1(TheKomura-KatoApproach)
7.Non-linearEvolutionEquations2(TheApproachthrough
theCrandall-LiggettConvergenceTheorem)
SupplementaryNotes
Bibliography
Index
NotationofSpaces