注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学自然科学总论随机微分方程

随机微分方程

随机微分方程

定 价:¥43.00

作 者: (挪)Bernt φksendal著
出版社: 世界图书出版公司北京公司
丛编项:
标 签: 微积分

ISBN: 9787506236218 出版时间: 1998-01-01 包装: 平装
开本: 20cm 页数: 271页 字数:  

内容简介

暂缺《随机微分方程》简介

作者简介

暂缺《随机微分方程》作者简介

图书目录

I.Introduction
Someproblems(1-6)wherestochasticdifferentialequationsplay
anessentialroleinthesolution
II.SomeMathematicalPreliminaries
Randomvariables,independence,stochasticprocesses
Kolmogorov'sextensiontheorem
Brownianmotion
BasicpropertiesofBrownianmotion
VersionsofprocessesandKolmogorov'scontinuitytheorem
Exercises
III.ItoIntegrals
Mathematicalinterpretationofequationsinvolving"noise"
TheItointegral
SomepropertiesoftheItointegral
Martingales
ExtensionsoftheItointegral
ComparisonbetweenItoandStratonovichintegrals
Exercises
IV.ItoProcessesandtheItoFormula
Itoprocesses(stochasticintegrals)
The1-dimensionalItoformula
Themulti-dimensionalItoformula
Themartingalerepresentationtheorem
Exercises
V.StochasticDifferentialEquations
Thepopulationgrowthmodelandotherexamples
Brownianmotionontheunitcircle
Existenceanduniquenesstheoremforstochastic
differentialequations
Weakandstrongsolutions
Exercises
VI.TheFilteringProblem
Statementofthegeneralproblem
Thelinearfilteringproblem
Step1:Z-linearandZ-measurableestimates
Step2:Theinnovationprocess
Step3:TheinnovationprocessandBrownianmotion
Step4:AnexplicitformulaforXl
Step5:ThestochasticdifferentialequationforXt
The1-dimensionalKalman-Bucyfilter
Examples
Themulti-dimensionalKalman-Bucyfilter
Exercises
VII.Diffusions:BasicProperties
DefinitionofanItodiffusion
(A)TheMarkovproperty
(B)ThestrongMarkovproperty
Hittingdistribution,harmonicmeasureandthe
meanvalueproperty
(C)Thegeneratorofadiffusion
(D)TheDynkinformula
(E)Thecharacteristicoperator
Exercises
VIII.OtherTopicsinDiffusionTheory
(A)Kolmogorov'sbackwardequation
Theresolvent
(B)TheFeynman-Kacformula.Killing
(C)Themartingaleproblem
(D)WhenisanItoprocessadiffusion?
HowtorecognizeaBrownianmotion
(E)Randomtimechange
TimechangeformulaforItointegrals
Examples:Brownianmotionontheunitsphere
Harmonicandanalyticfunctions
(F)TheGirsanovtheorem
Exercises
IX.ApplicationstoBoundaryValueProblems
(A)TheDirichletproblem
Regularpoints
ThestochasticDirichletproblem
Existenceanduniquenessofsolution
WhenisthesolutionofthestochasticDirichletproblem
alsoasolutionoftheoriginalDirichletproblem?
(B)ThePoissonproblem
Astochasticversion
Existenceofsolution
Uniquenessofsolution
ThecombinedDirichlet-Poissonproblem
TheGreenmeasure
Exercises
X.ApplicationtoOptimalStopping
Statementoftheproblem
Leastsuperharmonicmajorants
Existencetheoremforoptimalstopping
Uniquenesstheoremforoptimalstopping
Examples:SomestoppingproblemsforBrownianmotion
Rewardfunctionsassumingnegativevalues
Tiletime-inhomogeneouscase
Example:Whenistherighttimetosellthestocks?
Optimalstoppingproblemsinvolvinganintegral
Connectionwithvariationalinequalities
Exercises
XI.ApplicationtoStochasticControl
Statementoftheproblem
TheHamilton-Jacobi-Bellman(HJB)equation
AconverseoftheHJBequation
Markovcontrolsversusgeneraladaptivecontrols
Thelinearstochasticregulatorproblem
Anoptimalportfolioselectionproblem
Asimpleproblemwheretheoptimalprocessisdiscontinuous
Stochasticcontrolproblemswithterminalconditions
Exercises
AppendixA:NormalRandomVariables
AppendixB:Conditional.Expectations
AppendixC:UniformIntegrabilityandMartingale
Convergence
Solutionsandadditionalhintstosomeoftheexercises
Bibliography
ListofFrequentlyUsedNotationandSymbols
Index

本目录推荐