BOOK2.SchemesandVarieties
ChapterV.Schemes
1.TheSpecofaRing
1.1.DefinitionofSpecA
1.2.PropertiesofPointsofSpecA
1.3.TheZariskiTopologyofSpecA
1.4.Irreducibility,Dimension
Exercisesto~1
2.Sheaves
2.1.Presheaves
2.2.TheStructurePresheaf
2.3.Sheaves
2.4.StalksofaSheaf
Exercisesto~2
3.Schemes
3.1.DefinitionofaScheme
3.2.GlueingSchemes
3.3.ClosedSubschemes
3.4.ReducedSchemesandNilpotents
3.5.FinitenessConditions
Exercisesto~3
4.ProductsofSchemes
4.1.DefinitionofProduct
4.2.GroupSchemes
4.3.Separatedness
Exercisesto~4
ChapterVI.Varieties
1.DefinitionsandExamples
1.1.Definitions
1.2.VectorBundles
1.3.VectorBundlesandSheaves
1.4.DivisorsandLineBundles
Exercisesto~1
2.AbstractandQuasiprojectiveVarieties
2.1.Chow'sLemma
2.2.BlowupAlongaSubvariety
2.3.ExampleofNon-QuasiprojectiveVariety
2.4.CriterionsforProjectivity
Exercisesto~2
3.CoherentSheaves
3.1.SheavesofOx-modules
3.2.CoherentSheaves
3.3.DevissageofCoherentSheaves
3.4.TheFinitenessTheorem
Exercisesto~3
4.ClassificationofGeometricObjectsandUniversalSchemes
4.1.SchemesandFunctors
4.2.TheHilbertPolynomial
4.3.FlatFamilies
4.4.TheHilbertScheme
Exercisesto~4
BOOK3.ComplexAlgebraicVarietiesandComplexManifolds
ChapterVII.TheTopologyofAlgebraicVarieties
1.TheComplexTopology
1.1.Definitions
1.2.AlgebraicVarietiesasDifferentiableManifolds;
Orientation
1.3.HomologyofNonsingularProjectiveVarieties
Exercisesto~1
2.Connectedness
2.1.PreliminaryLemmas
2.2.TheFirstProofoftheMainTheorem
2.3.TheSecondProof
2.4.AnalyticLemmas
2.5.Connectednes8ofFibres
Exercisesto~2
3.TheTopologyofAlgebraicCurves
3.1.LocalStructureofMorphisms
3.2;TriangulationofCurves
3.3.TopologicalClassificationofCurves
3.4.CombinatorialClassificationofSurfaces
3.5.TheTopologyofSingularitiesofPlaneCurves
Exercisesto~3
4.RealAlgebraicCurves
4.1.ComplexConjugation
4.2.ProofofHarnack'sTheorem
4.3.OvalsofRealCurves
Exercisesto~4
ChapterVIII.ComplexManifolds
1.DefinitionsandExamples
1.1.Definition
1.2.QuotientSpaces
1.3.CommutativeAlgebraicGroupsasQuotientSpaces
1.4.ExamplesofCompactComplexManifoldsnot
IsomorphictoAlgebraicVarieties
1.5.ComplexSpaces
Exercisesto~1
2.DivisorsandMeromorphicFunctions
2.1.Divisors
2.2.MeromorphicFunctions
2.3.TheStructureoftheFieldM(X)
Exercisesto~2
3.AlgebraicVarietiesandComplexManifolds
3.1.ComparisonTheorems
3.2.ExampleofNonisomorphicAlgebraicVarietiesthat
AreIsomorphicasComplexManifolds
3.3.ExampleofaNonalgebraicCompactComplex
ManifoldwithMaximalNumberofIndependent
MetamorphicFunctions
3.4.TheClassificationofCompactComplexSurfaces
Exercisesto~3
4.KahlerManifolds
4.1.KaihlerMetric
4.2.Examples
4.3.OtherCharacterisationsofKahlerMetrics
4.4.ApplicationsofKahlerMetrics
4.5.HodgeTheory
Exercisesto~4
ChapterIX.Uniformisation
1.TheUniversalCover
1.1.TheUniversalCoverofaComplexManifold
1.2.UniversalCoversofAlgebraicCurves
1.3.ProjectiveEmbeddingofQuotientSpaces
Exercisesto~1
2.CurvesofParabolicType
2.1.Thetafunctions
2.2.ProjectiveEmbedding
2.3.EllipticFunctions,EllipticCurvesandElliptic
Integrals
Exercisesto~2
3.CurvesofHyperbolicType
3.1.PoincareSeries
3.2.ProjectiveEmbedding
3.3.AlgebraicCurvesandAutomorphicFunctions
Exercisesto~3
4.UniformisingHigherDimensionalVarieties
4.1.CompleteIntersectionsareSimplyConnected
4.2.ExampleofManifoldwithaGivenFiniteGroup
4.3.Remarks
Exercisesto~4
HistoricalSketch
1.EllipticIntegrals
2.EllipticFunctions
3.AbelianIntegrals
4.RiemannSurfaces
5.TheInversionofAbelianIntegrals
6.TheGeometryofAlgebraicCurves
7.HigherDimensionalGeometry
8.TheAnalyticTheoryofComplexManifolds
9.AlgebraicVarietiesoverArbitraryFieldsandSchemes
References
ReferencesfortheHistoricalSketch
Index