全书共五章。其中前二章(集与点集、测度与可测函数)以较小的篇幅紧凑地介绍了学习全书所需的集合论和测度论基础,第三章Lebesgue积分,第四章Lp空间是全书的中心内容,系统地介绍了Lebesgue积分论,并给出了较多的应用例子,第五章徽分论与Stieltjes积分,包括广义测度的一个梗概。《实变函数》在每一章后增加了评注,习题依要求的不同分为A、B两类,在《实变函数》的最后还附有对每一道习题的解答与提示。与传统教材相比,《实变函数》适当增加了应用实例,增加习题数量并将基本题与难题分开;加强背景与主要思路的说明;与前后课程的衔接处添加了引导性说明。《实变函数》用语准确,表述清晰。可作为理工科大学、高等师范院校数学及相近专业的教材或参考书,也可供有一定数学基础的读者自学之用。