注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学自然科学总论Maple高级应用和经典实例

Maple高级应用和经典实例

Maple高级应用和经典实例

定 价:¥38.00

作 者: 马开平[等]编著
出版社: 国防工业出版社
丛编项: 超强数学工具精点
标 签: (数学工具/数学分析)软件

ISBN: 9787118027129 出版时间: 2002-01-01 包装: 胶版纸
开本: 26cm 页数: 449 字数:  

内容简介

  本书讲解了已被列入美国工科学生必备软件之一——Maple的应用,目的是让读者了解Maple可以解决什么问题和掌握解决这些问题的技能。为此,本书包含了大量实例和练习。关于应用,重点介绍了Maple的计算原理和思想,以使读者能真正掌握,并轻松解决数学问题。另外本书介绍了11个领域内的27个实例。本书适用于高等学校学生,以及具有初步的高等数学知识和计算机知识的其他读者、从事实际工作的工程技术人员、高等中等学校的教师和学生、从事各种理论工作(数学、物理等)的科学工作者。

作者简介

暂缺《Maple高级应用和经典实例》作者简介

图书目录

应用篇                  
 第0章  Maple 7基础知识                  
 0. 1  什么是Maple                  
 0. 2  Maple的结构                  
 0. 3 基本运算操作                  
 0. 3. 1 数值计算                  
 0. 3. 2 符号处理                  
 0. 3. 3 图形显示                  
 0. 3. 4 编程初步                  
 0. 4 本章小结                  
 第1章  假设功能                  
 1. 1 假设功能的需求与应用                  
 1. 2 假设的基础                  
 1. 3 本章小结                  
 第2章 极限与连续性                  
 2. 1 使用limit                  
 2. 2 多维极限                  
 2. 3 检查连续性                  
 2. 4 本章小结                  
 第3章 微分                  
 3. 1 符号微分                  
 3. 1. 1 使用diff                  
 3. 1. 2  D算子                  
 3. 1. 3  隐函数微分与全微分                  
 3. 2 自动微分                  
 3. 3  用plot和diff考察一个函数                  
 3. 4 提出和解决微分问题的例子                  
 3. 5 本章小结                  
 第4章  积分                  
 4. 1  不定积分                  
 4. 2 定积分                  
 4. 3 数值积分                  
 4. 4 积分变换                  
 4. 4. 1 拉普拉斯变换                  
 4. 4. 2 傅里叶变换                  
 4. 4. 3 其他变换                  
 4. 5 本章小结                  
 第5章  级数                  
 5. 1 级数初体验                  
 5. 2 级数结构与类型                  
 5. 2. 1 级数的结构                  
 5. 2. 2 级数的类型                  
 5. 3 级数的应用                  
 5. 3. 1 系数与首项                  
 5. 3. 2 微积分                  
 5. 3. 3 解方程                  
 5. 3. 4 解微分方程                  
 5. 3. 5 特殊问题                  
 5. 4 函数逼近                  
 5. 4. 1 概述                  
 5. 4. 2 各种函数逼近的使用与比较                  
 5. 5 幂级数软件包                  
 5. 6 本章小结                  
 第6章 图形                  
 6. 1 初识绘图                  
 6. 1. 1 二维绘图初步                  
 6. 1. 2  三维绘图初步                  
 6. 1. 3  plots软件包                  
 6. 1. 4  plottools软件包                  
 6. 1. 5 绘制箭头函数(映射)                  
 6. 2 二维绘图                  
 6. 2. 1 plot的选项                  
 6. 2. 2 用display叠加图形                  
 6. 2. 3  用textplot添加文本                  
 6. 2. 4 对数坐标和刻度坐标                  
 6. 2. 5 保角变换图                  
 6. 2. 6 矢量场                  
 6. 2. 7 等值线和密度图                  
 6. 2. 8 绘制柱状图                  
 6. 2. 9 绘制多边形                  
 6. 2. 10 绘制复数型参量的实数值函数                  
 6. 2. 11 绘制线性不等式                  
 6. 2. 12 根轨迹图                  
 6. 3 三维图形                  
 6. 3. 1  使用plot3d                  
 6. 3. 2 使用三维的plots函数                  
 6. 3. 3 绘制空间曲线和管道                  
 6. 3. 4 绘制多面体                  
 6. 3. 5 绘制节点数据                  
 6. 3. 6 绘制三维点的数据                  
 6. 3. 7 plots中的其他函数                  
 6. 4  图形动画                  
 6. 5  PLOT/PLOT3D结构                  
 6. 6 本章小结                  
 第7章  线性代数                  
 7. 1 建立和修改矩阵                  
 7. 1. 1 用array定义矩阵                  
 7. 1. 2 用linalg定义矩阵                  
 7. 1. 3 指标函数                  
 7. 1. 4 编程矩阵                  
 7. 1. 5 矩阵的幂                  
 7. 1. 6 参数化矩阵                  
 7. 1. 7 对矩阵使用map和subs                  
 7. 2 矩阵代数                  
 7. 2. 1 基本库中的功能                  
 7. 2. 2 用linalg作矩阵加法与乘法                  
 7. 2. 3 矩阵的转置                  
 7. 2. 4 矩阵求逆                  
 7. 2. 5 矩阵的标度                  
 7. 3 矩阵分解                  
 7. 3. 1  LU分解                  
 7. 3. 2  Cholesky分解.                   
 7. 3. 3 QR分解                  
 7. 4 求解线性方程组                  
 7. 4. 1  使用linsolve                  
 7. 4. 2 最小二乘法求解                  
 7. 5 基与空间                  
 7. 5. 1 对基进行计算及正交化                  
 7. 5. 2 消去法函数                  
 7. 5. 3 矩阵空间                  
 7. 6 特征值与特征矢量                  
 7. 6. 1  使用eigenvals与eigenvects函数                  
 7. 6. 2 奇异值与奇异矢量                  
 7. 6. 3 特征多项式和最小多项式                  
 7. 7 检查矩阵性质                  
 7. 8 子矩阵和超矩阵                  
 7. 8. 1 建立子矩阵                  
 7. 8. 2 建立超矩阵                  
 7. 9 标准型                  
 7. 10 矢量计算                  
 7. 10. 1 矢量代数                  
 7. 10. 2 矢量计算                  
 7. 11 本章小结                  
 第8章  微分方程                  
 8. 1 微分方程一瞥                  
 8. 1. 1 常微分方程(ODE)                  
 8. 1. 2 偏微分方程(PDE)                  
 8. 2 微分方程软件包DEtools. PDEtools                  
 8. 2. 1 图形功能                  
 8. 2. 2 变量与坐标替换功能                  
 8. 3 常微分方程的一般解法                  
 8. 3. 1 解析解                  
 8. 3. 2 级数解法                  
 8. 3. 3 数值求解                  
 8. 4 常微分方程的高级解法--摄动法                  
 8. 4. 1 庞加莱--林斯泰特法                  
 8. 4. 2 多重尺度法                  
 8. 5 偏微分方程的求解                  
 8. 5. 1 偏微分方程的解析解特例                  
 8. 5. 2 偏微分方程的李点对称                  
 8. 6 本章小结                  
 第9章  高级编程                  
 9. 1 编程简介                  
 9. 1. 1 编程初体验                  
 9. 1. 2 程序的一般形式                  
 9. 1. 3 由程序返回值                  
 9. 1. 4 变量nargs, args与procname                  
 9. 1. 5 类型检查与程序参量                  
 9. 2 计算规则和范围                  
 9. 2. 1 参量的计算规则                  
 9. 2. 2 局部变量的计算规则                  
 9. 2. 3 作用域的规则                  
 9. 3 程序选项                  
 9. 3. 1 remember选项                  
 9. 3. 2 其他程序选项                  
 9. 4 调试程序                  
 9. 4. 1 用printlevel调试                  
 9. 4. 2 使用Maple的调试器                  
 9. 5 阅读Maple程序                  
 9. 6 封装程序                  
 9. 6. 1  用户软件包与库                  
 9. 6. 2 制作帮助页面                  
 9. 7 本章小结                  
 实例篇                  
 数学类                  
 实例1  复变函数中的Wrtinger导数. Beltrami方程及椭圆域                  
 实例2  傅里叶级数                  
 实例3 非线性方程的近似解                  
 实例4 拉格朗日乘子. 极大值和极小值                  
 实例5 曼妙的曲线                  
 实例6 虚拟贝壳和摆线的动画经济类                  
 实例7 微观经济学中的效用函数                  
 实例8 化肥经济理论的多变量优化控制问题生物学类                  
 实例9 生物学中的McConnell方程                  
 实例10 酶动力学速率的确定化学类                  
 实例11 一个简单化学反应                  
 实例12 液体的蒸馏分离                  
 实例13 化学平衡力学类                  
 实例14 二维薄膜振动方程                  
 实例15 耦合简谐振子系统                  
 实例16  桥梁变形自动控制类                  
 实例17 液体加热                  
 实例18 小车上的摆锤摸型仿真类                  
 实例19 三维弹性振子                  
 实例20 双摆                  
 实例21 陀螺仪电工类                  
 实例22 等效阻抗                  
 实例23 半波和全波二极管整流                  
 实例24 圆筒中的磁场热交换类                  
 实例25 柱形热交换器金属加工类                  
 实例26 金属拔制成型量子力学类                  
 实例27 阶跃势函数的量子力学反射                  
                   
                   

本目录推荐