注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络电子商务与计算机文化SAS系统和数据分析

SAS系统和数据分析

SAS系统和数据分析

定 价:¥22.00

作 者: 邓祖新主编
出版社: 电子工业出版社
丛编项: 高等学校电子商务系列教材
标 签: (数学工具/数学分析)软件

购买这本书可以去


ISBN: 9787505379299 出版时间: 2002-08-01 包装: 胶版纸
开本: 26cm 页数: 268 字数:  

内容简介

  本书主要介绍如何应用SAS软件系统进行数据分析。全书内容分为两部分,第一部分介绍SAS系统的一些基本操作、数据库管理、统计报表输出、绘制各种统计图形和简单编程。第二部分结合具体数据实例,介绍数据分析中常用的几种统计分析方法:回归分析、主成分分析、因子分析、典型相关分析、判别分析、聚类分析和时间序列分析。本书主要是面向电子商务专业的本科生,也可作为MBA、研究生的教材,同时也可作为经济类各专业学生学习数据处理课程的参考书。

作者简介

暂缺《SAS系统和数据分析》作者简介

图书目录

第1章  SAS系统简介                  
 1.1  SAS系统与统计学                  
 1.1.1  SAS系统的功能和模块                  
 1.1.2  统计的方法和内容                  
 1.2  Windows环境下SAS系统的安装要求                  
 1.2.1  操作系统要求                  
 1.2.2  CPU与内存要求                  
 1.2.3  硬盘存储空间要求                  
 1.2.4  系统时钟                  
 1.2.5  config.sys和autoexec.bat                  
 1.3  启动SAS系统                  
 1.3.1  交互显示管理方式                  
 1.3.2  交互行方式                  
 1.3.3  非交互方式                  
 1.3.4  批处理方式                  
 1.4  SAS系统的基本运行环境                  
 1.4.1  显示管理系统窗口                  
 1.4.2  显示管理系统命令                  
 1.4.3  显示管理系统的常用窗口                  
 1.5  SAS系统的几组重要命令                  
 1.5.1  向SAS系统寻求帮助命令                  
 1.5.2  显示管理系统命令框中常用命令                  
 1.5.3  文本编辑行命令                  
 1.6  运行SAS程序的步骤                  
 1.6.1  在program editor窗口中键入程序                  
 1.6.2  提交这段程序                  
 1.6.3  查看log窗口的信息                  
 1.6.4  重新调出刚才提交的程序                  
 1.6.5  在output窗口查看运行结果                  
 1.6.6  存储程序                  
 第2章  SAS程序编写基础                  
 2.1  SAS系统对数据的管理                  
 2.1.1  SAS数据集                  
 2.1.2  SAS数据库                  
 2.1.3  SAS数据集的输入格式和输出格式                  
 2.2  建立SAS系统的数据集                  
 2.2.1  用SAS/ASSIST 通用菜单援助系统创建数据集                  
 2.2.2  用SAS/FSP系统的fsedit过程创建数据集                  
 2.2.3  用SAS数据步data step将外部文件转换为数据集                  
 2.2.4  用SAS/ACCESS系统访问其他的数据库                  
 2.2.5  用file/import或export输入/输出数据库                  
 2.3  SAS数据集的编辑                  
 2.3.1  增加数据集一个新变量                  
 2.3.2  选择数据集的变量和观测                  
 2.3.3  拼接和合并数据集                  
 2.3.4  使用proc transpose过程转置数据集                  
 2.3.5  使用SAS/FSP软件的fsview过程编辑数据集                  
 2.4  SAS编程基础                  
 2.4.1  用在data步中的控制语句                  
 2.4.2  用在proc步中的通用语句                  
 2.4.3  使用列表报告proc print和汇总报告proc tabulate                  
 2.4.4  SAS宏功能                  
 第3章  SAS图形                  
 3.1  SAS系统的图形功能简介                  
 3.2  散布图. 折线图和层次图                  
 3.2.1  proc plot过程                  
 3.2.2  生成高分辨率图形                  
 3.2.3  散布图                  
 3.2.4  折线图                  
 3.2.5  层次图                  
 3.3  条形图. 圆饼图和星形图                  
 3.3.1  proc gchart过程                  
 3.3.2  条形图                  
 3.3.3  圆饼图                  
 3.3.4  星形图                  
 3.4  三维图形                  
 3.4.1  proc g3d过程                  
 3.4.2  曲面图                  
 3.4.3  气泡图                  
 3.5  编辑统计图形                  
 3.5.1  图形编辑窗口                  
 3.5.2  编辑图形                  
 3.5.3  输入/输出图形                  
 第4章  概率论与数理统计基础知识                  
 4.1  随机变量及其分布                  
 4.1.1  随机变量                  
 4.1.2  概率分布                  
 4.2  随机变量的数学期望和方差                  
 4.3  多维随机变量及其分布                  
 4.3.1  联合分布                  
 4.3.2  边际分布                  
 4.3.3  多维随机变量的数学期望和方差                  
 4.3.4  协方差和相关系数                  
 4.3.5  条件分布                  
 4.4  几个常见的概率分布                  
 4.4.1  多元正态分布                  
 4.4.2  卡方分布                  
 4.4.3  t分布                  
 4.4.4  F分布                  
 4.5  渐近分布基本理论                  
 4.5.1  依概率收敛                  
 4.5.2  依分布收敛                  
 4.6  统计量及其分布                  
 4.7  参数的估计                  
 4.7.1  无偏性                  
 4.7.2  有效性                  
 4.7.3  最小均方误差                  
 4.7.4  渐近性                  
 4.8  假设检验                  
 4.8.1  显著性检验法                  
 4.8.2  置信区间法                  
 4.9  SAS的一些基础统计过程                  
 4.9.1  univariate基础统计过程                  
 4.9.2  实例分析                  
 4.9.3  means基础统计过程                  
 4.9.4  实例分析                  
 第5章  回归分析                  
 5.1  相关分析和一元线性回归分析                  
 5.1.1  相关分析                  
 5.1.2  变量之间的关系                  
 5.1.3  回归模型及其运用                  
 5.1.4  未指定误差项分布的回归模型                  
 5.1.5  最小二乘估计法                  
 5.2  多元线性回归分析                  
 5.2.1  多元回归模型表示法                  
 5.2.2  最小二乘法估计                  
 5.2.3   的估计和t检验                  
 5.2.4  R2和F检验                  
 5.3  SAS的corr及reg过程                  
 5.3.1  corr相关过程                  
 5.3.2  reg回归过程                  
 5.3.3  实例分析                  
 5.4  逐步回归分析                  
 5.4.1  逐步回归分析                  
 5.4.2  变量选择的方法                  
 5.4.3  引入变量和剔除变量的依据                  
 5.4.4  逐步回归在使用过程中要注意的问题                  
 5.4.5  stepwise逐步回归过程                  
 5.4.6  实例分析                  
 5.5  非线性回归分析                  
 5.5.1  可变换成线性的非线性回归分析                  
 5.5.2  多项式回归分析                  
 5.5.3  不可变换成线性的非线性回归分析                  
 5.5.4  SAS的实现                  
 第6章  主成分. 因子和典型相关分析                  
 6.1  主成分分析                  
 6.1.1  主成分的导出                  
 6.1.2  贡献率与累积贡献率                  
 6.1.3  样本资料数据的主成分分析                  
 6.1.4  数据的标准化                  
 6.1.5  princomp主成分过程                  
 6.1.6  实例分析                  
 6.2  因子分析                  
 6.2.1  何为因子分析                  
 6.2.2  因子载荷矩阵的求解                  
 6.2.3  factor因子分析过程                  
 6.2.4  factor score因子得分过程                  
 6.2.5  实例分析                  
 6.3  典型相关分析                  
 6.3.1  典型相关分析                  
 6.3.2  cancorr典型相关分析过程                  
 6.3.3  实例分析                  
 第7章  判别和聚类分析                  
 7.1  判别分析                  
 7.1 1  距离判别分析                  
 7.1.2  Fisher线性函数判别                  
 7.1.3  discrim判别分析过程                  
 7.1.4  candisc典型判别分析过程                  
 7.1.5  实例分析                  
 7.2  聚类分析                  
 7.2.1  距离和相似系数                  
 7.2.2  类的特征和类与类之间的距离                  
 7.2.3  系统聚类法                  
 7.2.4  其他聚类方法                  
 7.2.5  cluster聚类分析过程                  
 7.2.6  fastclus快速聚类过程                  
 7.2.7  varclus方差聚类过程                  
 7.2.8  tree聚类树型输出过程                  
 7.2.9  常用过程比较和选择                  
 7.2.10  实例分析                  
 第8章  时间序列分析                  
 8.1  时间序列的平滑技术                  
 8.1.1  滑动平均与加权滑动平均法                  
 8.1.2  二次滑动平均预测法                  
 8.1.3  指数平滑法                  
 8.1.4  二次指数平滑法                  
 8.1.5  三次指数平滑法                  
 8.1.6  温特线性和季节性指数平滑                  
 8.2  时间序列的分解                  
 8.2.1  时间序列的结构形式                  
 8.2.2  时间序列的分解                  
 8.3  Box Jenkins法                  
 8.3.1  ARIMA模型                  
 8.3.2  ARIMA时间序列过程                  
 8.3.3  实例分析                  
 参考文献                  

本目录推荐