前言
符号表
第一章 碰撞振动系统在非共振与弱共振条件下的Hopf分岔
第一节 高维映射的基本理论
第二节 平面映射的Hopf分岔
第三节 高维映射Hopf分岔分析的中心流形——范式方法
第四节 双自由度碰撞振动系统周期运动的Hopf分岔与混沌
第五节 碰撞振动系统的概周期环面分岔
参考文献
附录A 范式的相关系数
附录B 圆周保向同胚的基本性质
第二章 碰撞振动系统在强共振条件下的Hopf分岔与亚谐分岔
第一节 平面映射在强共振条件下的Hopf分岔与亚谐分岔
第二节 双自由度碰撞振动系统在强共振条件(λ3(0)=1)下的亚谐分岔
第三节 双自由度碰撞振动系统在强共振条件(λ4(0)=1)下的亚谐分岔与Hopf分岔
第四节 碰撞振动系统在强共振情况下的分岔与擦边运动
第五节 惯性式冲击振动落砂机在强共振条件下的亚谐分岔与Hopf分岔
第六节 冲击消振器在强共振条件(λ2(0)=1)下的亚谐分岔与Hopf分岔
参考文献
第三章 碰撞振动系统周期运动的余维二分岔与混沌
第一节 余维二分岔问题的范式
第二节 碰撞振动系统周期运动的余维二分岔(Ⅰ)
第三节 碰撞振动系统周期运动的余维二分岔(Ⅱ)
第四节 碰撞振动系统周期运动的余维二分岔(Ⅲ)
第五节 含间隙振动系统的余维二分岔(Ⅰ)
第六节 含间隙振动系统的余维二分岔(Ⅱ)
参考文献
第四章 双自由度碰撞振动系统周期运动的全局分岔
第一节 双自由度碰撞振动系统周期运动的全局分岔
第二节 碰撞振动系统周期运动到混沌的非常规转迁过程 参考文献
附录C Feigenbaum吸引子的结构
第五章 塑性碰撞振动系统的周期运动稳定性与全局分岔
第一节 单自由度塑性碰撞振动系统的周期运动与全局分岔
第二节 两自由度塑性碰撞振动系统的周期运动与分岔
参考文献
第六章 存在间隙的双自由度振动系统的周期运动稳定性、分岔与混浊
第一节 存在间隙的双自由度振动系统的力学模型
第二节 对称周期运动
第三节 对称周期运动的Poincare映射及稳定性
第四节 周期运动的叉式分岔、倍化分岔与擦边奇异性
第五节 对称周期运动的Hopf分岔及混沌形成过程
参考文献
第七章 冲击振动机械系统的周期运动与分岔
第一节 冲击振动落砂机的周期运动与分岔
第二节 双质体冲击振动成型机的周期运动与分岔
第三节 轮轨摩擦碰撞动力学
第四节 小型振动冲击式打桩机的周期运动与分岔
参考文献
附录D Smale马蹄与符号动力学