注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络计算机科学理论与基础知识信号处理导论:英文版

信号处理导论:英文版

信号处理导论:英文版

定 价:¥39.00

作 者: [S.J.奥法尼德斯]Sophocles J.Orfanidis著
出版社: 清华大学出版社
丛编项: 电子工程系列丛书
标 签: 通信技术理论与基础

ISBN: 9787302030591 出版时间: 1999-01-01 包装: 简裝本
开本: 20cm 页数: 798 字数:  

内容简介

  内容简介本书以清晰、直观的文体全面介绍了数字信号处理(DSP)的基本原理和算法,并通过大量实例展示了信号处理理论的应用:如:数字信号发生器(包括波表发生器)、数字音响效果处理器、降噪和信号增强、随机噪声发生器等。本书实用性极强,全书没有繁琐的公式推导,但提供了100个C语言函数和MATLAB函数,以及编程中的考虑,使读者能方便地进行软件实现和算法仿真,同时还介绍了DSP硬件实现的方法。全书写350个习题,其中75个上机实验。此外,还有几个一般的DSP文献少有介绍的内容如:环形缓冲器、参量均衡器设计、音响效果处理、Savitzky-G01ay平滑滤波器和噪声整形等。本书适用于不同层次的读者如:大学生、研究生、工程技术人员、有关项目的科研人员以及DSP爱好者。本书前言出版前言清华大学出版社与PrenticeHall出版公司合作推出的“大学计算机教育丛书(影印版)”和“ATM与B-ISDN技术丛书(影印版)”受到了广大读者的欢迎。很多读者通过电话、信函、电子邮件对我们的工作以积极评价,并提出了不少极好的建议,令我们感动和鼓舞。我们除了继续努力完善上述两套丛书以外,还将努力拓宽影印图书的专业范围,以更好地满足读者的需要。电子工程是信息科学的基础,高等学校新的教学要求指出,计算机专业和电子学专业的学生应相互学习渗透到彼此的专业领域,拓宽知识面,以适应信息技术飞速发展的时代。培养通晓相关专业领域知识的人才,成为面向新世纪的理工科教育的迫切要求。为此,我们挑选了与信息科学、电子学有关的国外优秀著作,组成电子工程系列丛书(影印版),奉献给国内读者。我们希望这套新的丛书能为国内的大专院校师生和科研单位的工作人员提供新的知识和营养,也衷心期待着读者对我们一如既往的支持。清华大学出版社PrenticeHall出版公司1998.12

作者简介

暂缺《信号处理导论:英文版》作者简介

图书目录

Preface                  
 1 Sampling and Reconstruction 1                  
 l.1 introduction, l                  
 l.2 Review of Anatog Signals, 1                  
 l.3 Sampling Theorem, 4                  
 1.3.l Sampling Theorem 6                  
 1.3.2 Antialiasing Prefilters , 7                  
 1.3.3 Hardware Limits, 8                  
 1.4 Sampling of Sinusoids, 9                  
 1.4.1 Analog Reconstruction and Aliasing. 10                  
 1.4.2 Rotational Motion, 27                  
 1.4.3 DSP Frequency Units. 30                  
 1.5 Spectra of Sample  Signals*, 30                  
 l.5.1 Discrete the Fourier Transform, 3l                  
 l.5.2 Spectrum Replication, 33                  
 l.5.3 Practical Antialiasing Prefiters, 38                  
 1.6 Analog Reconstructors*. 43                  
 1.6.1 Ideal R6constrUtors, 44                  
 1.6.2 Staircase Reconstructors, 46                  
 1.6.3 Anti-Image Postfiliters. 47                  
 l.7 Basic Components of DSP Systems. S4                  
 l.8 Problems. 57                  
                   
 2 Quantization 63                  
 2.1 Quantization Process, 63                  
 2.2 Oversampling and Noise Shaping*, 67                  
 2.3 D/A Converfers, 73                  
 2.4 A/D Converters, 77                  
 2.5 Analog and Digital Dither, 86                  
 2.6 Problems, 93                  
 3 Discrete-Time Systems 98                  
 3.l Input/Output Rules, 99                  
 3.2 Linearity and Time Invariance, l03                  
 3.3 Impulse Response, l06                  
 3.4 FIR and IIR Filters, l08                  
 3.5 Causality and Stability, ll5                  
 3.6 Problems, l20                  
                   
 4 FIR Filtering and Convolution 124                  
 4.l Block Processing Methods, l25                  
 4.1.1 Convolution, l25                  
 4.l.2 Direct Form, 126                  
 4.l.3 Convolution Table, l29                  
 4.l.4 LTI Form, l30                  
 4.1.5 Matrix Form, l32                  
 4.1.6 Flip-and-Slide Form, l34                  
 4.1.7 Transient and Steady-State Behavior, l35                  
 4.l.8 Convolution of Infinite Sequences, l37                  
 4.1.9 Programming Considerations. 142                  
 4.l.10  Overlap-Add Block Convolution Method, l46                  
 4.2 Sample Processing Methods, 149                  
 4.2.l Pure Delays, l50                  
 4.2.2 FIR Filtering in Direct Form, l55                  
 4.2.3 Programming Considerations, l63                  
 4.2.4 Hardware Realizations and Circular Buffers. 165                  
 4.3 Problems, 18l                  
                   
 5 z-Transforms 186                  
 5.l Basic Properties, 186                  
 5.2 Region of Convergence, 189                  
 5.3 causality and stability. 196                  
 5.4 Frequency Spectrum, 200                  
 5.5 Inverse z-Transforms, 205                  
 5.6 Problems, 2l4                  
                   
 6 Transfer Functions 217                  
 6.1 Equivalent Descriptions of Digital Filters, 217                  
 6.2 Transfer Functions, 217                  
 6.3 Sinusoidal Response, 232                  
 6.3.l Steady-State Response, 232                  
 6.3.2 Transient Response, 235                  
 6.4  Pole/Zero Designs, 246                  
 6.4.l First-Order Filters. 246                  
 6.4.2 Parametric Resonators and Equalizers, 248                  
 6.4.3 Notch and Comb Filters, 253                  
 6.5 Deconvolution, Inverse Filters. and Stability, 258                  
 6.6 Problems, 263                  
                   
 7 Digital Filter Realizations 269                  
 7.1 Direct Form, 269                  
 7.2 Canonical Form, 275                  
 7.3 Cascade Form 281                  
 7.4 Cascade to Canonical, 288                  
 7.5 Hardware Realizations and Circular Buffers, 297                  
 7.6 Quantization Effects in Digital Filters, 3l0                  
 7.7 Problems, 31l                  
                   
 8 Signal Processing Applications 321                  
 8.l Digital Waveform Generators, 321                  
 8.1.1 Sinusoidal Generators, 32l                  
 8.1.2 Periodic Waveform Generators, 326                  
 8.1.3 Wavetable Generators, 33S                  
 8.2 Digital Audio Effects, 355                  
 8.2.1 Delays, Echoes, and Comb Filters, 355                  
 8.2.2 Flanging, Chorusing, and Phasing, 360                  
 8.2.3 Digital Reverberation, 367                  
 8.2.4 Multitap Delaye, 379                  
 8.2.5 Compressors. Limiters, Expanders, and Gates. 384                  
 8.3 Noise Reduction and Signal Enhancement, 388                  
 8.3.1 Noise Reduction Filters, 388                  
 8.3.2 Notch and Comb Filters, 404                  
 8.3.3 Line and Frame Combs for Digital TV, 416                  
 8.3.4 Signal Averaging, 429                  
 8.3.5 Savitzky-Golay Smoothing Filters*, 434                  
 8.4 Problems. 462                  
                   
 9 DFT/FFT Algorithms 472                  
 9.l Frequency Resolution and Windowing, 472                  
 9.2 DTFT COmPtatiO4 483                  
 9.2.1 DTFT at a Single Frequency, 483                  
 9.2.2 DTFT over Frequency Range, 486                  
 9.2.3 DFT, 488                  
 9.2.4 Zero Padding. 490                  
 9.3 Physical versus Computational Resolution, 491                  
 9.4 Matrix Form of DFT. 495                  
 9.5 Modulo-N Reduction, 497                  
 9.6 Inverse DFT, 505                  
 9.7 Sampling of Periodic Signals and the DFT, 508                  
 9.8 FFT, 513                  
 9.9 Fast Convolution, 524                  
 9.9.1 Circular Convolution 524                  
 9.9.2 Overlap-Add and Overlap-Save Methods, 530                  
 9.10 Problems. 533                  
                   
 10 FIR Digital Filter Design  541                  
 l0.l Window Method, 541                  
 l0.l.l Ideal Filters, 54l                  
 l0.1.2 Rectangular Window, 544                  
 l0.1.3 Hamming Window, 549                  
 l0.2 Kaiser Window. 551l                  
 l0.2.l Kaiser Window for Filter Design. 55l                  
 l0.2.2 Kaiser Window for Spectral Analysis, 565                  
 l0.3 Frequency Sampling Method, 567                  
 l0.4 Other FIR Design Methods, 568                  
 l0.5 Problems, S69                  
                   
 11 IIR Digital Filter Design 573                  
 1l.l Bilinear Transformation, 573                  
 ll.2 First-Order Lowpass and Highpass Filters, 576                  
 ll.3 Second-Order Peaking and Notching Filters, S83                  
 ll.4 Paramtric Equalizer Filters, 592                  
 ll.5 Comb Filters. 60l                  
 ll.6 Higher-Order Filters. 604                  
 1l.6.l Analog Lowpass Butterworth Filters, 605                  
 l1.6.2 Digital Lowpass Filters, 611                  
 ll.6.3 Digital Highpass Filters, 6l4                  
 ll.6.4 Digital Bandpass Filters, 618                  
 l l.6.5 Digital Bandstop Filters, 623                  
 ll.6.6 Chebyshev Filter Design*, 626                  
 ll.7 Problems, 640                  
                   
 12 Interpolation Decimation' and Oversampling 644                  
 l2.l interpolation and Oversmpling, 644                  
 l2.2 Interpolation Filter Design*, 6S0                  
 l2.2.l Direct Form, 650                  
 l2.2.2 Polyphase Form, 652                  
 12.2.3 Frequency Domain Characteristics. 6S7                  
 12.2.4 Kaiser Window Designs, 660                  
 12.2.5 Multistage Design, 661                  
 l2.3 Linear and Hold interpolators*, 669                  
 l2.4 Design Examples*, 674                  
 l2.4.l 4-foldinterpolators, 674                  
 l2.4.2 Multistage 4-fold Interpolators, 678                  
 l2.4.3 DAC Equalization, 683                  
 l2.4.4 Postfilter Design and Equalization, 687                  
 l2.4.5 Multistage Equalization, 691                  
 l2.5 Decimation and Oversmpling*, 699                  
 l2.6 Sampling Rate Converters*, 704                  
 l2.7 Noise Sh3ping Quantizers*, 7l2                  
 l2.8 Problems, 720                  
                   
 13 Appendices 728                  
 A Random Signals*, 728                  
 A.l Autocorrelation Functions and Power Spectra, 728                  
 A.2 Filtering of Random Signals, 732                  
 B Random Number Generators, 734                  
 B.l Uniform and Gaussian Generators, 734                  
 B.2 Low-Frequency Noise Generators*, 740                  
 B.3 I/f Noise Generators*, 745                  
 B.4 Problems, 749                  
 C Complex Arithmetic in C, 752                  
 D MATLAB Functions, 755                  
 References 773                  
 Index 790                  

本目录推荐