Preface
Introduction
ContentsofOtherVolumes
I:PRELIMINARIES
1.Setsandfunctions
2.Metricandnormedlinearspaces
AppendixLirasupandliminf
3.TheLebesgueintegral
4.Abstractmeasuretheory
5.Twoconrergencearguments
6.Equicontinuity
Notes
Problems
II:HILBERTSPACES
1.ThegeometryofHilbertspace
2.TheRieszlemma
3.Orthonormalbases
4.TensorproductsofHilbertspaces
5.Ergodictheory:anintroduction
Notes
Problems
III:BANACHSPACES
1.Definitionandexamples
2.Dualsanddoubleduals
3.TheHahn-Banachtheorem
4.OperationsonBanachspaces
5.TheBairecategorytheoremanditsconsequences
Notes
Problems
IV:TOPOLOGICALSPACES
1.Generalnotions
2.Netsandconvergence
3.Compactness
AppendixTheStone-Weierstrasstheorem
4.Measuretheoryoncompactspaces
5.WeaktopologiesonBanachspaces
AppendixWeakandstrongmeasurability
Notes
Problems
V:LOCALLYCONVEXSPACES
1.Generalproperties
2.Frdchetspaces
3.Functionsofrapiddeceaseandthetempereddistributions
AppendixTheN-representationforand
4.Inductivelimits:generalizedfunctionsandweaksolutionsof
partialdifferentialequations
5.Fixedpointtheorems
6.Applicationsoffixedpointtheorems
7.Topologiesonlocallyconvexspaces:dualitytheoryandthe
strongdualtopology
AppendixPolarsandtheMackey-Arenstheorem
Notes
Problems
VI:BOUNDEDOPERATORS
1.Topologiesonboundedoperators
2.Adjoints
3.Thespectrum
4.Positiveoperatorsandthepolardecomposition
5.Compactoperators
6.ThetraceclassandHilbert-Schmidtideals
Notes
Problems
VII:THESPECTRALTHEOREM
1.Thecontinuousfunctionalcalculus
2.Thespectralmeasures
3.Spectralprojections
4.Ergodictheoryrevisited:Koopmanism
Notes
Problems
VIII:UNBOUNDEDOPERATORS
1.Domains,graphs,adjoints,andspectrum
2.Symmetricandself-adjointoperators:thebasiccriterion
forself-adjointness
3.Thespectraltheorem
4.Stone'stheorem
5.Formalmanipulationisatouchybusiness:Nelson's
example
6.Quadraticforms
7.Convergenceofunboundedoperators
8.TheTrotterproductformula
9.Thepolardecompositionforclosedoperators
10.Tensorproducts
11.Threemathematicalproblemsinquantummechanics
Notes
Problems
THEFOURIERTRANSFORM
1.TheFouriertransformon(Rn)and(Rn),convolutions
2.TherangeoftheFouriertransform:Classicalspaces
3.TherangeoftheFouriertransform:Analyticity
Notes
Problems
SUPPLEMENTARYMATERIAL
II.2.ApplicationsoftheRieszlemma
III.1.BasicpropertiesofLpspaces
IV.3.ProofofTychonoffstheorem
IV.4.TheRiesz-MarkovtheoremJorX=[0,1]
IV.5.MinimizationofJunctionals
V.5.Proofsofsometheoremsinnonlinearfunctionalanalysis
VI.5.Applicationsofcompactoperators
VIII.7.Monotoneconvergenceforforms
VIII.8.MoreontheTrotterproductformula
Usesofthemaximumprinciple
Notes
Problems
ListofSymbols
Index