注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学量子混沌导论

量子混沌导论

量子混沌导论

定 价:¥79.00

作 者: 斯托克曼H-J Stockmaon著
出版社: 世界图书出版公司北京公司
丛编项:
标 签: 物理学中的数学方法

购买这本书可以去


ISBN: 9787506260053 出版时间: 2003-01-01 包装: 胶版纸
开本: 22cm 页数: 368页 字数:  

内容简介

  This book introduces the quantum mechanics of classically chaotic systems, or Quantum Chaos for short. The basic concepts of quantum chaos can be grasped easily by any student of physics, but the underlying physical prin-ciples tend to be obscured by the mathematical apparatus used to describe it. The author's philosophy, therefore, has been to keep the discussion simple and to illustrate theory, wherever possible, with experimental or numerical examples. The microwave billiard experiments, initiated by the author and his group, play a major role in this respect. A basic knowledge of quantum mechanics is assumed.

作者简介

  H-J Stockmann was born in 1945 in Gottingen, Germany. He started his studies in physics and mathematics in 1964 at the University of Heidelberg. He performed his diploma work in experimental physics, on Optical spectroscopy which the finished in 1969. For his doctoral work he changed to nuclear solid state physics, with experiments at the research reactor of the Kernforschungszentrum karlsruhe.

图书目录

Preface.
1Introduction
2Billiardexperiments
2.1Wavepropagationinsolidsandliquids
2.1.1Chladnifigures
2.1.2Watersurfacewaves
2.1.3Vibratingblocks
2.1.4Ultrasonicfieldsinwater-filledcavities
2.2Microwavebilliards
2.2.1Basicprinciples
2.2.2Fielddistributionsinmicrowavecavities
2.2.3Billiardswithbrokentime-reversalsymmetry
2.2.4Josephsonjunctions
2.3Mesoscopicstructures
2.3.1Antidotlattices
2.3.2Quantumdotbilliards
2.3.3Quantumwellbilliards
2.3.4Quantumcorrals
3Randommatrices
3.1Gaussianensembles
3.1.1Symmetries
3.1.2Universalityclasses
3.1.3DefinitionoftheGaussianensembles
3.1.4Correlatedeigenenergydistribution
3.1.5Averageddensityofstates
3.2Spectralcorrelations
3.2.1Nearestneighbourdistancedistribution
3.2.2Fromtheintegrabletothenonintegrableregime
3.2.3n-pointcorrelationfunction
3.2.4∑2and△3statistics
3.2.5Spectralformfactor
3.3Supersymmetrymethod
3.3.1Replicatrick
3.3.2Anticommutingvariables
3.3.3Hubbard-Stratonovitchtransformation
3.3.4Saddlepointintegration
4Floquetandfight-bindingsystems
4.1Hamiltonianswithperiodictimedependences
4.1.1Floquetoperator
4.1.2Circularensembles
4.2Dynamicallocalization
4.2.1Kickedrotator
4.2.2Hydrogenatomsinstrongradiofrequencyfields
4.2.3Ultra-coldatomsinmagneto-opticaltraps
4.3Tight-bindingsystems
4.3.1Andersonmodel
4.3.2Transfermatrixmethod
4.3.3Harperequation
5Eigenvaluedynamics
5.1Pechukas-Yukawamodel
5.1.1Equationsofmotion
5.1.2Constantsofmotion..
5.1.3Phasespacedensity
5.1.4Pechukas-Yukawamodelandrandommatrixtheory
5.2Billiardleveldynamics
5.2.1BilliardandPechukas-Yukawaleveldynamics
5.2.2TestsoftheYukawaconjecture
5.3Geometricalphases
6Scatteringsystems
6.1Billiardsasscatteringsystems
6.1.1Scatteringmatrix
6.1.2BilliardBreit-Wignerformula
6.1.3Coupled-channelHamiltonian
6.1.4Perturbingbeadmethod
6.2Amplitudedistributionfunctions
6.2.1Randomsuperpositionsofplanewaves
6.2.2Porter-Thomasdistributions
6.3Fluctuationpropertiesofthescatteringmatrix
6.3.1Ericsonfluctuations
6.3.2ConductancefluctuationsinmesoscopicsystemsSemiclassicalquantummechanics
7.1Integrablesystems
7.1.1One-dimensionalcase
7.1.2Multidimensionalintegrablesystems
7.2Gutzwillertraceformula
7.2.1Feynmanpathintegral
7.2.2Ashortexcursioninclassicalmechanics
7.2.3Semiclassicalpropagator
7.2.4SemiclassicalGreenfunction
7.2.5Monodromymatrix
7.2.6Traceformula
7.3Contributionstothedensityofstates
7.3.1Smoothpartofthedensityofstates
7.3.2Oscillatorypartofthedensityofstates
7.3.3Bouncing-ballcontributions
8Applicationsofperiodicorbittheory
8.1Periodicorbitanalysisofspectraandwavefunctions
8.1.1Periodicorbitsinthespectra
8.1.2Hydrogenatominastrongmagneticfield
8.1.3Scars
8.2Semiclassicaltheoryofspectralrigidity
8.2.1Rigidityforintegrablesystems
8.2.2Semiclassicalsumrule
8.2.3Rigidityfornonintegrablesystems
8.3Periodicorbitcalculationofspectra
8.3.1Dynamicalzetafunction
8.3.2Riemannzetafunction
8.4Surfaceswithconstantnegativecurvature
8.4.1Selbergtraceformula
8.4.2Non-Euclidianbilliards
References
Index...

本目录推荐