Prerequisites
ChapterIKnotsandKnotTypes
1.Definitionofaknot
2.Tameversuswildknots
3.Knotprojections
4.Isotopytype,amphichelralandinvertibleknots
ChapterIITheFundamentelGroup
Introduction
1.Pathsandloops
2.Classesofpathsandloops
3.Changeofbasepoint
4.Inducedhomomorphismsoffundamentalgroups
5.Fundamentalgroupofthecircle
ChapterIIITheFreeGroups
Introduction.
1.ThefreegroupF[]
2.Reducedwords
3.Freegroups
ChapterIVPresentationofGroups
Introduction
1.Developmentofthepresentationconcept
2.Presentationsandpresentationtypes
3.TheTietzetheorem
4.Wordsubgroupsandtheassociatedhomomorphisms
5.Freeabeliangroups
ChapterVCalculationofFundamentalGroups
Introduction
1.Retractionsanddeformations
2.Homotopytype
3.ThevanKampentheorem
ChapterVIPresentationofaKnotGroup
Introduction
1.Theoverandunderpresentations
2.Theoverandunderpresentations,continued
3.TheWirtingerpresentation
4.Examplesofpresentations
5.Existenceofnontrivialknottypes
ChapterVIITheFreeCalculusandtheElementaryIdeals
Introduction
1.Thegroupring
2.Thefreecalculus
3.TheAlexandermatrix
4.Theelementaryideals
ChapterVIIITheKnotPolynomials
Introduction
1.Theabelianizedknotgroup
2.Thegroupringofaninfinitecyclicgroup
3.Theknotpolynomials
4.Knottypesandknotpolynomials
ChapterIXCharacteristicPropertiesoftheKnotPolynomials
Introduction
1.Operationofthetrivializer
2.Conjugation
3.Dualpresentations
AppendixI.DifferentiableKnotsareTame
AppendixII.Categoriesandgroupoids
AppendixIII.ProofofthevanKampentheorem
GuidetotheLiterature
Bibliography
Index