ReaderGuidelines
1RiskTheory
1.1TheRuinProblem
1.2TheCramer-LundbergEstimate
1.3RuinTheoryforHeavy-TailedDistributions
1.3.1SomePreliminaryResults
1.3.2Cramer-LundbergTheoryforSubexponentialDistributions
1.3.3TheTotalClaimAmountintheSubexponentialCase
1.4Cramer-LundbergTheoryforLargeClaims:aDiscussion
1.4.1SomeRelatedClassesofHeavy-TailedDistributions
1.4.2TheHeavy-TailedCramer-LundbergCaseRevisited
2FluctuationsofSums
2.1TheLawsofLargeNumbers
2.2TheCentralLimitProblem
2.3RefinementsoftheCLT
2.4TheFunctionalCLT:BrownianMotionAppears
2.5RandomSums
2.5.1GeneralRandomlyIndexedSequences
2.5.2RenewalCountingProcesses
2.5.3RandomSumsDrivenbyRenewalCountingProcesses
3FluctuationsofMaxima
3.1LimitProbabilitiesforMaxima
3.2WeakConvergenceofMaximaUnderAffineTransformations
3.3MaximumDomainsofAttractionandNormingConstants
3.3.1TheMaximumDomainofAttractionoftheFrechetDistribution(x)=exp{-x-a}
3.3.2TheMaximumDomainofAttractionoftheWeibullDistribution(x)=exp{-(-x)a}
3.3.3TheMaximumDomainofAttractionoftheGumbelDistributionA(x)=exp{-exp{-x}}
3.4TheGeneralisedExtremeValueDistributionandtheGeneralisedParetoDistribution
3.5AlmostSureBehaviourofMaxima
4FluctuationsofUpperOrderStatistics
4.1OrderStatistics
4.2TheLimitDistributionofUpperOrderStatistics
4.3TheLimitDistributionofRandomlyIndexedUpperOrderStatistics
4.4SomeExtremeValueTheoryforStationarySequences
5AnApproachtoExtremesviaPointProcesses
5.1BasicFactsAboutPointProcesses
5.1.1DefinitionandExamples
5.1.2DistributionandLaplaceFunctional
5.1.3PoissonRandomMeasures
5.2WeakConvergenceofPointProcesses
5.3PointProcessesofExceedances
5.3.1TheIIDCase
5.3.2TheStationaryCase
5.4ApplicationsofPointProcessMethodstoIIDSequences
5.4.1RecordsandRecordTimes
5.4.2EmbeddingMaximainExtremalProcesses
5.4.3TheFrequencyofRecordsandtheGrowthofRecordTimes
5.4.4InvariancePrincipleforMaxima
5.5SomeExtremeValueTheoryforLinearProcesses
5.5.1NoiseintheMaximumDomainofAttractionoftheFrechetDistributiona
5.5.2SubexponentiaiNoiseintheMaximumDomainofAttractionoftheGumbelDistributionA
6StatisticalMethodsforExtremalEvents
6.1Introduction
6.2ExploratoryDataAnalysisforExtremes
6.2.1ProbabilityandQuantilePlots
6.2.2TheMeanExcessFunction
6.2.3Gumbel'sMethodofExceedances
6.2.4TheReturnPeriod
6.2.5RecordsasanExploratoryTool
6.2.6TheRatioofMaximumandSum
6.3ParameterEstimationfortheGeneralisedExtremeValueDistribution
6.3.1MaximumLikelihoodEstimation
6.3.2MethodofProbability-WeightedMoments
6.3.3TailandQuantileEstimation,aFirstGo
6.4EstimatingUnderMaximumDomainofAttractionConditions
6.4.1Introduction
6.4.2EstimatingtheShapeParameter
6.4.3EstimatingtheNormingConstants
6.4.4TailandQuantileEstimation
6.5FittingExcessesOveraThreshold
6.5.1FittingtheGPD
6.5.2AnApplicationtoRealData
7TimeSeriesAnalysisforHeavy-TailedProcesses
7.1AShortIntroductiontoClassicalTimeSeriesAnalysis
7.2Heavy-TailedTimeSeries
7.3EstimationoftheAutocorrelationFunction
7.4EstimationofthePowerTransferFunction
7.5ParameterEstimationforARMAProcesses
7.6SomeRemarksAboutNon-LinearHeavy-TailedModels
8SpecialTopics
8.1TheExtremalIndex
8.1.1DefinitionandElementaryProperties
8.1.2InterpretationandEstimationoftheExtremalIndex
8.1.3EstimatingtheExtremalIndexfromData
8.2ALargeClaimIndex
8.2.1TheProblem
8.2.2TheIndex
8.2.3SomeExamples
8.2.4OnSumsandExtremes
8.3WhenandHowRuinOccurs
8.3.1Introduction
8.3.2TheCramer-LundbergCase
8.3.3TheLargeClaimCase
8.4PerpetuitiesandARCHProcesses
8.4.1StochasticRecurrenceEquationsandPerpetuities
8.4.2BasicPropertiesofARCHProcesses
8.4.3ExtremesofARCHProcesses
8.5OntheLongestSuccess-Run
8.5.1TheTotalVariationDistancetoaPoissonDistribution
8.5.2TheAlmostSureBehaviour
8.5.3TheDistributionalBehaviour
8.6SomeResultsonLargeDeviations
8.7ReinsuranceTreaties
8.7.1Introduction
8.7.2ProbabilisticAnalysis
8.8StableProcesses
8.8.1StableRandomVectors
8.8.2SymmetricStableProcesses
8.8.3StableIntegrals
8.8.4Examples
8.9Self-Similarity
Appendix
A1ModesofConvergence
A1.1ConvergenceinDistribution
A1.2ConvergenceinProbability
A1.3AlmostSureConvergence
A1.4Lp-Convergence
A1.5ConvergencetoTypes
A1.6ConvergenceofGeneralisedInverseFunctions
A2WeakConvergenceinMetricSpaces
A2.1PreliminariesaboutStochasticProcesses
A2.2TheSpacesC[0,1]andD[0,1]
A2.3TheSkorokhodSpaceD(0,)
A2.4WeakConvergence
A2.5TheContinuousMappingTheorem
A2.6WeakConvergenceofPointProcesses
A3RegularVariationandSubexponentiality
A3.1BasicResultsonRegularVariation
A3.2PropertiesofSubexponentialDistributions
A3.3TheTailBehaviourofWeightedSumsofHeavy-TailedRandomVariables
A4SomeRenewalTheory
References
Index
ListofAbbreviationsandSymbols