注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学医学和生命科学中的数学问题

医学和生命科学中的数学问题

医学和生命科学中的数学问题

定 价:¥49.00

作 者: (美)Frank C.Hoppensteadt,(美)Charles S.Peskin著
出版社: 世界图书出版公司北京公司
丛编项: Texts in Applied Mathematics
标 签: 暂缺

购买这本书可以去


ISBN: 9787506233040 出版时间: 1997-09-01 包装: 平装
开本: 20cm 页数: 252 字数:  

内容简介

  Mathematical Biology is the study of medicine and the life sciences that uses mathematical models to help predict and interpret what we observe. This book describes several major contributions that have been made to population biology and to physiology by such theoretical work. We have tried to keep the presentation brief to keep the price of the book as reasonable as possible, and to ensure that the topics are presented at a level that is accessible to a wide audience. Each topic could serve as a launching point for more advanced study, and suitable references are suggested to help with this. If the underlying mathematics is understood for these basic examples. then mathematical aspects of more advanced life science preblems will be within reach.本书为英文版。

作者简介

暂缺《医学和生命科学中的数学问题》作者简介

图书目录

     Contents
    Series Preface
    Preface
    Introduction
   1 The Mathematics of Populations: Demographics
    1.1. Geometric Population Growth
    1.1.1. Growth of Bacterial Cultures
    1.1.2. Least-Squares Estimation of the Growth Rate
    1.1.3. Growth of Human Populations
    1.1.4. Infinitesimal Sampling Intervals and Doubling Times
    1.2. Geometric Growth in a Population Stratified by Age
    1.2.1. Fibonacci's Rabbit Population
    1.2.2. Euler's Renewal Equations
    1.2.3. Age Structure in Human Popnlations
    1.3. The Limits of Growth
    1.3.1. Verhulst's Model
    1.3.2. Predator Satiation
    1.3.3. Chaos
    1.3.4. Infimtesimal Sampling Intervals in
    a Limiting Environment
    1.4. Age Structure of Populations near
    the Limits of Growth
    1.5. Harvesting
    1.6. Summary
    1.7. Annotated References
    Exercises
   2 Inheritance
    2.1. Mendel's Laws
    2.2. Bacterial Genetics: Plasmids
    2.3. Genetics in Small Populations of Human.
    2.4. The Hardy-Weinberg Equilibrium
    2.5. Summary
    2.6. Annotated References
    Exercises
   3 A Theory of Epidemics
    3.1. Spread of Infection within a Family
    3.2. The Threshold of an Epidemic
    3.3. Calculation of the Severity of an Epidemic
    3.4. Summary
    3.5. Annotated References
    Exercises
   4 Biogeography
    4.1. TheGameofLife.
    4.2. Random Walks
    4.3. The Diffusion Apprcndmation
    4.4. The Growth of Bacteria on Plates
    4.5. Another View of Random Walks
    4.6. Summary
    4.7. Annotated References
    Exercises
   5 The Heart and Circulation
    5.1. Plan of the Circulation
    5.2. Volume, Flow, and Pressure
    5.3. Resistance and Compliance Vessels
    5.4. The Heart as a Pair of Pumps
    5.5. Mathematical Model of the
    Uncontrolled Circulation
    5.6. Balancing the Two Sides of the Heart and
    the Two Circulations
    5.7. Cardiac Output and Arterial Blood Pressure:
    The Need for Extemal Circulatory Control Mechanisms
    5.8. Neural Control: The Baroreceptor Loop
    5.9. Autoregulation
    5.10. Changes in the Circulation Occurring at Birth
    5.11. Dynamics of the Arterial Pulse
    5.12. Annotated References,
    Exercises
   6 Gas Exchange in the Lungs
    6.1. The Ideal Gas Law and the Solubility of Gases
    6.2. The Equations of Gas Transport in One Alveolus.
    6.3. Gas Transport in the Lung
    6.4. Optimal Gas TRansport
    6.5. Mean Alveolar and Arterial Partial Pressures
    6.6. Transport of O2
    6.7. Annotated References
    Exercises
   7 Control of Cell Volume ana
    the Electrical Properties of Cell Membranes
    7.1. Osmotic Pressure and the Work of Concentration
    7.2. A Simple Model of Cell Volume Control
    7.3. The Movement of lons across Cell Membranes
    7.4. Control of Cell Volume: The Interaction of
    Electrical and Osmotic Effects
    7.5. Transient Changes in Membrane Potential:
    A Signaling Mechanism in Nerve and Muscle
    7.6. Annotated References
    Exercises
   8 The Renal Countercurrent Mechanism
    8.1. The Nephron
    8.2. Differential Equations of Na+ and H2o Transport
    along the Renal Tubules
    8.3. The Loop of Henle
    8.4. The Juxtaglomerular Apparatus and
    the Renin-Angiotensin System
    8.5. The Distal Tubule and Collecting Duct:
    Concentrating and Diluting Modes
    8.6. Remarks on the Significance of
    the Juxtaglomerular Apparatus
    8.7. Annotated References
    Exercises
   9 Muscle Mechanics
    9.1. The Force-Velocity Curve
    9.2. Cross-Bridge Dynamics
    9.3. Annotated References
    Exercises
   10 Biological Clocks and Mechanisms
    of Neural Control
    10.1. A Theory of Clocks
    10.1.1.The Clock on the Wall
    10.1.2. Pbase Resetting: A Rubber Handed CIock
    10.1.3. Modulated Clocks
    10.2. Nerve Cell Membranes
    10.2.1. Cell Membrane Potential
    10.2.2. Guttman's Experiments
    10.3. VCON: A Voltage Controlled Oscillator Neuron
    10.3.1. Voltage Controlled Oscillators
    10.3.2. Phase Comparators and a Model Synapse.
    10.3.3. VCON: A Model Spike Generator
    10.3.4. Phase Locking Properties of a VCON
    10.4. Neural Control Networks
    10.4.1. Network Nqtation
    10.4.2. von Euler's Respiration Control Mechanism.
    10.5. Summary
    10.6. Annotated References
    Exercises
    Answers for Selected Exercises
    Index
   

本目录推荐