Chapter1
First-orderdifferentialequations
1.1Introduction
1.2First-orderlineardifferentialequations
1.3TheVanMeegerenartforgeries
1.4Separableequations
1.5Populationmodels
1.6Thespreadoftechnologicalinnovations
1.7Anatomicwastedisposalproblem
1.8Thedynamicsoftumorgrowth,mixingproblems,and
orthogonaltrajectories
1.9Exactequations,andwhywecannotsolveverymany
differentialequations
1.10Theexistence-uniquenesstheorem;Picarditeration
1.11Findingrootsofequationsbyiteration
1.11.1Newton'smethod
1.12Differenceequations,andhowtocomputetheinterest
dueonyourstudentloans
1.13Numericalapproximations;Euler'smethod
1.13.1ErroranalysisforEuler'smethod
1.14ThethreetermTaylorseriesmethod
1.15AnimprovedEulermethod
1.16TheRnnge-Kuttamethod
1.17Whattodoinpractice
Chapter2
Second-orderlineardifferentialequations
2.1Algebraicpropertiesofsolutions
2.2Linearequationswithconstantcoefficients
2.2.1Complexroots
2.2.2Equalroots;reductionoforder
2.3Thenonhomogeneousequation
2.4Themethodofvariationofparameters
2.5Themethodofjudiciousguessing
2.6Mechanicalvibrations
2.6.1TheTacomaBridgedisaster
2.6.2Electricalnetworks
2.7Amodelforthedetectionofdiabetes
2.8Seriessolutions
2.8.1Singularpoints,Eulerequations
2.8.2Regularsingularpoints,themethodofFrobenius
2.8.3Equalroots,androotsdifferingbyaninteger
2.9ThemethodofLaplacetransforms
2.10SomeusefulpropertiesofLaplacetransforms
2.11Differentialequationswithdiscontinuousright-handsides
2.12TheDiracdeltafunction
2.13Theconvolutionintegral
2.14Themethodofeliminationforsystems
2.15Higher-orderequations
Chapter3
Systemsofdifferentialequations
3.1Algebraicpropertiesofsolutionsoflinearsystems
3.2Vectorspaces
3.3Dimensionofavectorspace
3.4Applicationsoflinearalgebratodifferentialequations
3.5Thetheoryofdeterminants
3.6Solutionsofsimultaneouslinearequations
3.7Lineartransformations
3.8Theeigenvalue-eigenvectormethodoffindingsolutions
3.9Complexroots
3.10Equalroots
3.11Fundamentalmatrixsolutions;eA'
3.12Thenonhomogeneousequation;variationofparameters
3.13SolvingsystemsbyLaplacetransforms
Chapter4
Qualitativetheoryofdifferentialequations
4.1Introduction
4.2Stabilityoflinearsystems
4.3Stabilityofequilibriumsolutions
4.4Thephase-plane
4.5Mathematicaltheoriesofwar
4.5.1L.F.Richardson'stheoryofconflict
4.5.2Lanchester'scombatmodelsandthebattleoflwoJima
4.6Qualitativepropertiesoforbits
4.7Phaseportraitsoflinearsystems
4.8Longtimebehaviorofsolutions;thePoincare-BendixsonTheorem
4.9Introductiontobifurcationtheory
4.10Predator-preyproblems;orwhy
thepercentageofsharkscaughtintheMediterranean
SearosedramaticallyduringWorldWarI
4.11Theprincipleofcompetitiveexclusioninpopulationbiology
4.12TheThresholdTheoremofepidemiology
4.13Amodelforthespreadofgonorrhea
Chapter5
SeparationofvariablesandFourierseries
5.1Twopointboundary-valueproblems
5.2Introductiontopartialdifferentialequations
5.3Theheatequation;separationofvariables
5.4Fourierseries
5.5Evenandoddfunctions
5.6Returntotheheatequation
5.7Thewaveequation
5.8Laplace'sequation
Chapter6
Sturm-Liouvilleboundaryvalueproblems
6.1Introduction
6.2Innerproductspaces
6.3Orthogonalbases,Hermitianoperators
6.4Sturm-Liouvilletheory
AppendixA
Somesimplefactsconcerningfunctions
ofseveralvariables
AppendixB
Sequencesandseries
AppendixC
CPrograms
Answerstoodd-numberedexercises
Index