Preface
1.Introduction
1.1SmoothingMethods:aNonparametric/Parametric
Compromise
1.2UsesofSmoothingMethods
1.3OutlineoftheChapters
Backgroundmaterial
Computationalissues
Exercises
2.SimpleUnivariateDensityEstimation
2.1TheHistogram
2.2TheFrequencyPolygon
2.3VaryingtheBinWidth
2.4TheEffectivenessofSimpleDensityEstimators
Backgroundmaterial
Computationalissues
Exercises
3.SmootherUnivariateDensityEstimation
3.1KernelDensityEstimation
3.2ProblemswithKernelDensityEstimation
3.3AdjustmentsandImprovementstoKernelDensityEstimation
3.4LocalLikelihoodEstimation
3.5RoughnessPenaltyandSpline-BasedMethods
3.6ComparisonofUnivariateDensityEstimators
Backgroundmaterial
Computationalissues
Exercises
4.MultivariateDensityEstimation
4.1SimpleDensityEstimationMethods
4.2KernelDensityEstimation
4.3OtherEstimators
4.4DimensionReductionandProjectionPursuit
4.5TheStateofMultivariateDensityEstimation
Backgroundmaterial
Computationalissues
Exercises
5.NonparametricRegression
5.1ScatterPlotSmoothingandKernelRegression
5.2LocalPolynomialRegression
5.3BandwidthSelection
5.4LocallyVaryingtheBandwidth
5.5OutliersandAutocorrelation
5.6SplineSmoothing
5.7MultiplePredictorsandAdditiveModels
5.8ComparingNonparametricRegressionMethods
Backgroundmaterial
Computationalissues
Exercises
6.SmoothingOrderedCategoricalData
6.1SmoothingandOrderedCategoricalData
6.2SmoothingSparseMultinomiats
6.3SmoothingSparseContingencyTables
6.4CategoricalData,Regression,andDensityEstimation
Backgroundmaterial
Computationalissues
Exercises
7.FurtherApplicationsofSmoothing
7.1DiscriminantAnalysis
7.2Goodness-of-FitTests
7.3Smoothing-BasedParametricEstimation
7.4TheSmoothedBootstrap
Backgroundmaterial
Computationalissues
Exercises
Appendices
A.DescriptionsoftheDataSets
B.MoreonComputationalIssues
References
AuthorIndex
SubjectIndex