注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书教育/教材/教辅考试计算机考试数字信号处理:原理、算法与应用

数字信号处理:原理、算法与应用

数字信号处理:原理、算法与应用

定 价:¥89.00

作 者: (美)John G.Proakis,(美)Dimitris G.Manolakis著
出版社: 中国电力出版社
丛编项: 国外经典计算机科学教材
标 签: 通信技术理论与基础

ISBN: 9787508324999 出版时间: 2004-09-01 包装: 胶版纸
开本: 23cm 页数: 968 字数:  

内容简介

  为了给读者在理论和实践应用之间进行合理的平衡,本书严谨地介绍了现代数字信号处理的基本概念和技术,并介绍了相关的算法和应用。本书涵盖了线性离散时间系统分析的时域和频域方法,还涉及了诸如采样、数字滤波器设计、滤波器实现、去卷积、插值、状态矢量空间方法、频谱分析等相关主题的内容。本书不仅要求对诸多示例、练习的理解,而且更强调对数字信号算法进行软件实现的实践环节。本书特点:·覆盖离散傅立叶变换(DFT)和快速傅立叶变换(FFT)算法,并对其进行了更加合理清晰的重组——介绍DFT,并在阐明傅立叶分析后描述其快速计算·描述模拟信号模数转换中涉及的运算和技术·在时域研究线性时不变离散时间系统和离散时间信号的特性·考虑双边z变换和单边z变换,并描述了求z反变换的方法·在频域分析信号与系统,给出连续时间信号与离散时间信号的傅立叶级数与傅立叶变换·实现无限冲激响应(IIR)与有限冲激响应(FIR)系统的结构形式,包括直接型、级联型、并联型、格型和格梯型·采样频率转换基础与多采样率转换系统·功率谱估计的详细测试,并讨论了非参数方法、基于模型的方法和基于特征分解的方法,包括MUSIC算法和ESPRIT算法·全书囊括了许多实例,并提供大约500个可解决的问题本书既适合作为本科生学习离散系统和数字信号处理课程的教材,又适合研究生一年级学习数字信号处理课程时作为教材使用。

作者简介

  JohnG.Proakis长期担任美国东北大学的电气工程教授,并担任该校电气与计算机工程系主任之职达14年之久。他分别从麻省理工学院和哈佛大学获得了硕士和博士学位。Proakis教授是众多成功教材的作者,其教材在世界上具有相当的影响力。

图书目录

IINTRODUCTION
1.1Signals,Systems,andSignalProcessing2
1.1.1BasicElementsofaDigitalSignalProcessingSystem,4
1.1.2AdvantagesofDigitaloverAnalogSignalProcessing,5
1.2ClassificationofSignals6
1.2.1MultichannelandMultidimensionalSignals,7
1.2.2Continuous-TimeVersusDiscrete-TimeSignals,8
1.2.3Continuous-ValuedVersusDiscrete-ValuedSignals,10
1.2.4DeterministicVersusRandomSignals,11
1.3TheConceptofFrequencyinContinuous-Timeand
Discrete-TimeSignals14
1.3.1Continuous-TimeSinusoidalSignals,14
1.3.2Discrete-TimeSinusoidalSignals,16
1.3.3HarmonicallyRelatedComplexExponentials,19
1.4Analog-to-DigitalandDigital-to-AnalogConversion21
1.4.1SamplingofAnalogSignals,23
1.4.2TheSamplingTheorem,29
1.4.3QuantizationofContinuous-AmplitudeSignals,33
1.4.4QuantizationofSinusoidalSignals,36
1.4.5CodingofQuantizedSamples,38
1.4.6Digital-to-AnalogConversion,38
1.4.7AnalysisofDigitalSignalsandSystemsVersusDiscrete-Time
SignalsandSystems,39
1.5SummaryandReferences39
Problems40
2DISCRETE-TIMESIGNALSANDSYSTEMS
2.1Discrete-TimeSignals43
2.1.1SomeElementaryDiscrete-TimeSignals,45
2.1.2ClassificationofDiscrete-TimeSignals,47
2.1.3SimpleManipulationsofDiscrete-TimeSignals,52
2.2Discrete-TimeSystems56
2.2.1Input-OutputDescriptionofSystems,56
2.2.2BlockDiagramRepresentationofDiscrete-TimeSystems,59
2.2.3ClassificationofDiscrete-TimeSystems,62
2.2.4InterconnectionofDiscrete-TimeSystems,70
2.3AnalysisofDiscrete-TimeLinearTime-InvariantSystems72
2.3.1TechniquesfortheAnalysisofLinearSystems,72
2.3.2ResolutionofaDiscrete-TimeSignalintoImpulses,74
2.3.3ResponseofLTISystemstoArbitraryInputs:TheConvolution
Sum.75
2.3.4PropertiesofConvolutionandtheInterconnectionofLTl
Systems,82
2.3.5CausalLinearTime-InvariantSystems,86
2.3.6StabilityofLinearTime-InvariantSystems,87
2.3.7SystemswithFinite-DurationandInfinite-DurationImpulse
Response.90
2.4Discrete-TimeSystemsDescribedbyDifferenceEquations91
2.4.1RecursiveandNonrecursiveDiscrete-TimeSystems.92
2.4.2LinearTime-InvariantSystemsCharacterizedby
Constant-CoefficientDifferenceEquations,95
2.4.3SolutionofLinearConstant-CoefficientDifferenceEquations.100
2.4.4TheImpulseResponseofaLinearTime-InvariantRecursive
System.108
2.5ImplementationofDiscrete-TimeSystems111
2.5.1StructuresfortheRealizationofLinearTime-Invariant
Systems.111
2.5.2RecursiveandNonrecumveRealizationsofFIRSystems.116
2.6CorrelationofDiscrete-TimeSignals118
2.6.1CrosscorrelationandAutocorrelationSequences,120
2.6.2PropertiesoftheAutocorrelationandCrosscorrelation
Sequences.122
2.6.3CorrelationofPeriodicSequences,124
2.6.4ComputationofCorrelationSequences,130
2.6.5Input-OutputCorrelationSequences,131
2.7SummaryandReferences134
Problems135
3THEZ-TRANSFORMANDITSAPPLICATIONTOTHEANALYSIS
OFLTlSYSTEMS151
3.1Thez-Transform151
3.1.1TheDirectz-Transform.152
3.1.2TheInversez-Transform,160
3.2Propertiesofthez-Transform161
3.3Rationalz-Transforms172
3.3.1PolesandZeros.172
3.3.2PoleLocationandTime-DomainBehaviorforCausalSignals.178
3.3.3TheSystemFunctionofaLinearTime-InvariantSystem,181
3.4Inversionofthez-Transform184
3.4.1TheInversez-TransformbyContourIntegration,184
3.4.2TheInversez-TransformbyPowerSeriesExpansion.186
3.4.3TheInversez-TransformbyPartial-FractionExpansion,[88
3.4.4DecompositionofRationalz-Transforms.195
3.5TheOne-sidedz-Transform197
3.5.1DefinitionandProperties,197
3.5.2SolutionofDifferenceEquations,201
3.6AnalysisofLinearTime-InvariantSystemsinthez-Domain203
3.6.1ResponseofSystemswithRationalSystemFunctions.203
3.6.2ResponseofPole-ZeroSystemswithNonzeroInitial
Conditions.204
3.6.3TransientandSteady-StateResponses.206
3.6.4CausalityandStability.208
3.6.5Pole-ZeroCancellations,210
3.6.6Multiple-OrderPolesandStability,211
3.6.7TheSchur-CohnStabilityTest,213
3.6.8StabilityofSecond-OrderSystems,215
3.7SummaryandReferences219
Problems220
4FREQUENCYANALYSISOFSIGNALSANDSYSTEMS230
4.1FrequencyAnalysisofContinuous-TimeSignals230
4.1.1TheFourierSeriesforContinuous-TimePeriodicSignals.232
4.1.2PowerDensitySpectrumofPeriodicSignals,235
4.1.3TheFourierTransformforContinuous-TimeAperiodic
Signals,240
4.1.4EnergyDensitySpectrumofAperiodicSignals.243
4.2FrequencyAnalysisofDiscrete-TimeSignals247
4.2.1TheFourierSeriesforDiscrete-TimePeriodicSignals,247
4.2.2PowerDensitySpectrumofPeriodicSignals,250
4.2.3TheFourierTransformofDiscrete-TimeAperiodicSignals,253
4.2.4ConvergenceofttxeFourierTransform,256
4.2.5EnergyDensitySpectrumofAperiodicSignals,260
4.2.6RelationshipoftheFourierTransformtothez-Transform,264
4.2.7TheCepstrum,265
4.2.8TheFourierTransformofSignalswithPolesontheUnit
Circle,267
4.2.9TheSamplingTheoremRevisited,269
4.2.10Frequency-DomainClassificationofSignals:TheConceptof
Bandwidth,279
4.2.11TheFrequencyRangesofSomeNaturalSignals,282
4.2.12PhysicalandMathematicalDualities,282
4.3PropertiesoftheFourierTransformforDiscrete-Time
Signals286
4.3.1SymmetryPropertiesoftheFourierTransform,287
4.3.2FourierTransformTheoremsandProperties,294
4.4Frequency-DomainCharacteristicsofLinearTime-Invariant
Systems305
4.4.1ResponsetoComplexExponentialandSinnsoidalSignals:The
FrequencyResponseFunction,306
4.4.2Steady-StateandTransientResponsetoSinusoidalInput
Signals,314
4.4.3Steady-StateResponsetoPeriodicInputSignals,315
4.4.4ResponsetoAperiodicInputSignals,316
4.4.5RelationshipsBetweentheSystemFunctionandtheFrequency
ResponseFunction,319
4.4.6ComputationoftheFrequencyResponseFunction,321
4.4.7Input-OutputCorrelationFunctionsandSpectra,325
4.4.8CorrelationFunctionsandPowerSpectraforRandomInput
Signals,327
4.5LinearTime-InvariantSystemsasFrequency-Selective
Filters330
4.5.1IdealFilterCharacteristics,331
4.5.2Lowpass,Highpass,andBandpassFilters,333
4.5.3DigitalResonators,340
4.5.4NotchFilters,343
4.5.5CombFilters,345
4.5.6All-PassFilters,350
4.5.7DigitalSinusoidalOscillators,352
4.6InverseSystemsandDeconvolution355
4.6.1InvertibilityofLinearTime-InvariantSystems,356
4.6.2Minimum-Phase,Maximum-Phase,andMixed-PhaseSystems,359
4.6.3SystemIdentificationandDeconvolution,363
4.6.4HomomorphicDeconvolution,365
SummaryandReferences367
Problems368
5THEDISCRETEFOURIERTRANSFORM:ITSPROPERTIESAND
APPLICATIONS394
5.1FrequencyDomainSampling:TheDiscreteFourier
Transform394
5.1.1Frequency-DomainSamplingandReconstructionof
Discrete-TimeSignals,394
5.1.2TheDiscreteFourierTransform(DFT),399
5.1.3TheDFTasaLinearTransformation,403
5.1.4RelationshipoftheDFTtoOtherTransforms,407
5.2PropertiesoftheDFT409
5.2.1Periodicity,Linearity,andSymmetryProperties,410
5.2.2MultiplicationofTwoDFTsandCircularConvolution,415
5.2.3AdditionalDFTProperties,421
5.3LinearFilteringMethodsBasedontheDFT425
5.3.1UseoftheDFTinLinearFiltering,426
5.3.2FilteringofLongDataSequences,430
5.4FrequencyAnalysisofSignalsUsingtheDFT433
5.5SummaryandReferences440
Problems440
6EFFICIENTCOMPUTATIONOFTHEOFT:FASTFOURIER
TRANSFORMALGORITHMS448
6.1EfficientComputationoftheDFT:FFTAlgorithms448
6.1.1DirectComputationoftheDFT,449
6.1.2Divide-and-ConquerApproachtoComputationoftheDFT,450
6.1.3Radix-2FFTAlgorithms,456
6.1.4Radix-4FFTAlgorithms,465
6.1.5Split-RadixFFTAlgorithms,470
6.1.6ImplementationofFFTAlgorithms,473
6.2ApplicationsofFFTAlgorithms475
6.2.1EfficientComputationoftheDFTofTwoRealSequences,475
6.2.2EfficientComputationoftheDFTofa2N-PointReal
Sequence,476
6.2.3UseoftheFFTAlgorithminLinearFilteringandCorrelation,477
6.3ALinearFilteringApproachtoComputationoftheDFT479
6.3.1TheGoertzelAlgorithm,480
6.3.2TheChirp-zTransformAlgorithm,482
QuantizationEffectsintheComputationof'theDFT486
6.4.1QuantizationErrorsintheDirectComputationoftheDFT,487
6.4.2QuantizationErrorsinFFTAlgorithms,489
6.5SummaryandReferences493
Problems494
7IMPLEMENTATIONOFDISCRETE-TIMESYSTEMS500
7.1StructuresfortheRealizationofDiscrete-TimeSystems500
7.2StructuresforFIRSystems502
7.2.1Direct-FormStructure,503
7.2.2Cascade-FormStructures,504
7.2.3Frequency-SamplingStructures*,506
7.2.4LatticeStructure,511
7.3StructuresforIIRSystems519
7.3.1Direct-FormStructures,519
7.3.2SignalFlowGraphsandTransposedStructures,521
7.3.3Cascade-FormStructures,526
7.3.4Parallel-FormStructures,529
7.3.5LatticeandLattice-LadderStructuresforIIRSystems,531
7.4State-SpaceSystemAnalysisandStructures539
7.4.1State-SpaceDescriptionsofSystemsCharacterizedbyDifference
Equations,540
7.4.2SolutionoftheState-SpaceEquations,543
7.4.3RelationshipsBetweenInput-OutputandState-Space
Descriptions,545
7.4.4State-SpaceAnalysisinthez-Domain,550
7.4.5AdditionalState-SpaceStructures,554
7.5RepresentationofNumbers556
7.5.1Fixed-PointRepresentatknvofNumbers,557
7.5.2BinaryFloating-PointRepresentationofNumbers,561
7.5.3ErrorsResultingfromRoundingandTruncation,564
7.6QuantizationofFilterCoefficients569
7.6.1AnalysisofSensitivitytoQuantizationofFilterCoefficients,569
7.6.2QuantizationofCoefficientsinFIRFilters,578
7.7Round-OffEffectsinDigitalFilters582
7.7.1Limit-CycleOscillationsinRecursiveSystems,583
7.7.2ScalingtoPreventOverflow,588
7.7.3StatisticalCharacterizationofQuantizationEffectsinFixed-Point
RealizationsofDigitalFilters,590
7.8SummaryandReferences598
Problems600
8DESIGNOFDIGITALFILTERS614
8.1GeneralConsiderations614
8.1.1CausalityandItsImplications,615
8.1.2CharacteristicsofPracticalFrequency-SelectiveFilters,619
8.2DesignofFIRFilters620
8.2.1SymmetricandAntisymmetricFIRFilters,620
8.2.2DesignofLinear-PhaseFIRFiltersUsingWindows,623
8.2.3DesignofLinear-PhaseFIRFiltersbytheFrequency-Sampling
Method,630
8.2.4DesignofOptimumEquirippleLinear-PhaseFIRFilters,637
8.2.5DesignofFIRDifferentiators,652
8.2.6DesignofHilbertTransformers,657
8.2.7ComparisonofDesignMethodsforLinear-PhaseFIRFilters,662
8.3DesignofIIRFiltersFromAnalogFilters666
8.3.1IIRFilterDesignbyApproximationofDerivatives,667
8.3.2IIRFilterDesignbyImpulseInvariance.671
8.3.3IIRFilterDesignbytheBilinearTransformation,676
8.3.4TheMatched-zTransformation,681
8.3.5CharacteristicsofCommonlyUsedAnalogFilters,681
8.3.6SomeExamplesofDigitalFilterDesignsBasedontheBilinear
Transformation,692
8.4FrequencyTransformations692
8.4:1FrequencyTransformationsintheAnalogDomain,693
8.4.2FrequencyTransformationsintheDigitalDomain,698
8.5DesignofDigitalFiltersBasedonLeast-SquaresMethod701
8.5.1Pad~ApproximationMethod,701
8.5.2Least-SquaresDesignMethods,706
8.5.3FIRLeast-SquaresInverse(Wiener)Filters,711
8.5.4DesignofIIRFiltersintheFrequencyDomain,719
8.6SummaryandReferences724
Problems726
9SAMPLINGANDRECONSTRUCTIONOFSIGNALS738
9.1SamplingofBandpassSignals738
9.1.1RepresentationofBandpassSignals,738
9.1.2SamplingofBandpassSignals.742
9.1.3Discrete-TimeProcessingofContinuous-TimeSignals.746
9.2Analog-to-DigitalConverSion748
9.2.1Sample-and-Hold,748
9.2.2QuantizationandCoding,750
9.2.3AnalysisofQuantizationErrors.753
9.2.4OversamplingA/DConverters,756
DESIGNOFDIGITALFILTERS614
8.1GeneralConsiderations614
8.1.1CausalityandItsImplications,615
8.1.2CharacteristicsofPracticalFrequency-SelectiveFilters,619
8.2DesignofFIRFilters620
8.2.1SymmetricandAntisymmetricFIRFilters,620
8.2.2DesignofLinear-PhaseFIRFiltersUsingWindows,623
8.2.3DesignofLinear-PhaseFIRFiltersbytheFrequency-Sampling
Method,630
8.2.4DesignofOptimumEquirippleLinear-PhaseFIRFilters,637
8.2.5DesignofFIRDifferentiators,652
8.2.6DesignofHilbertTransformers,657
8.2.7ComparisonofDesignMethodsforLinear-PhaseFIRFilters,662
8.3DesignofIIRFiltersFromAnalogFilters666
8.3.1IIRFilterDesignbyApproximationofDerivatives,667
8.3.2IIRFilterDesignbyImpulseInvariance,671
8.3.3IIRFilterDesignbytheBilinearTransformation,676
8.3.4TheMatched-zTransformation,681
8.3.5CharacteristicsofCommonlyUsedAnalogFilters,681
8.3.6SomeExamplesofDigitalFilterDesignsBasedontheBilinear
Transformation,692
8.4FrequencyTransformations692
8.4.1FrequencyTransformationsintheAnalogDomain,693
8.4.2FrequencyTransformationsintheDigitalDomain,698
8.5DesignofDigitalFiltersBasedonLeast-SquaresMethod701
8.5.1Pad6ApproximationMethod,701
8.5.2Least-SquaresDesignMethods,706
8.5.3FIRLeast-SquaresInverse(Wiener)Filters.711
8.5.4DesignofIIRFiltersintheFrequencyDomain,719
8.6SummaryandReferences724
Problems726
9SAMPLINGANDRECONSTRUCTIONOFSIGNALS738
9.1SamplingofBandpassSignals738
9.1.1RepresentationofBandpassSignals,738
9.1.2SamplingofBandpassSignals,742
9.1.3Discrete-TimeProcessingofContinuous-TimeSignals.746
9.2Analog-to-DigitalConversion748
9.2.1Sample-and-Hold,748
9.2.2QuantizationandCoding,750
9.2.3AnalysisofQuantizationErrors,753
9.2.4OversamplingA/DConverters,756
9.3Digital-to-AnalogConversion763
9.3.1SampleandHold,765
9.3.2First-OrderHold,768
9.3.3LinearInterpolationwithDelay,771
9.3.4OversamplingD/AConverters,774
9.4SummaryandReferences774
Problems775
10MULTIRATEDIGITALSIGNALPROCESSING782
10.1Introduction783
10.2DecimationbyaFactorD784
10.3InterpolationbyaFactor!787
10.4SamplingRateConversionbyaRationalFactorI/D790
10.5FilterDesignandImplementationforSampling-Rate
Conversion792
10.5.1Direct-FormFIRFilterStructures,793
10.5.2PolyphaseFilterStructures.794
10.5.3Time-VariantFilterStructures.800
10.6MultistageImplementationofSampling-RateConversion806
10.7Sampling-RateConversionofBandpassSignals810
10.7.1DecimationandInterpolationbyFrequencyConversion.812
10.7.2Modulation-FreeMethodforDecimationandInterpolation,814
10.8Sampling-RateConversionbyanArbitraryFactor815
10.8.1First-OrderApproximation.816
10.8.2Second-OrderApproximation(LinearInterpolation),819
10.9ApplicationsofMultirateSignalProcessing821
10.9.1DesignofPhaseShifters.821
10.9.2InterfacingofDigitalSystemswithDifferentSamplingRates,823
10.9.3ImplementationofNarrowbandLowpassFilters,824
10.9.4ImplementationofDigitalFilterBanks,825
10.9.5SubbandCodingofSpeechSignals,831
10.9.6QuadratureMirrorFilters,833
10.9.7Transmultiplexers,841
10.9.80versamplingA/DandD/AConversion,843
10.10SummaryandReferences844
Problems846
11LINEARPREDICTIONANDOPTIMUMLINEARFILTERS852
11.1InnovationsRepresentationofaStationaryRandom
Process852
11.1.1RationalPowerSpectra,854
11.1.2RelationshipsBetweentheFilterParametersandthe
AutocorrelationSequence,855
11.2ForwardandBackwardLinearPrediction857
11.2.1ForwardLinearPrediction,857
11.2.2BackwardLinearPrediction,860
11.2.3TheOptimumReflectionCoefficientsfortheLatticeForwardand
BackwardPredictors,863
11.2.4RelationshipofanARProcesstoLinearPrediction,864
11.3SolutionoftheNormalEquations864
11.3.1TheLevinson-DurbinAlgorithm,865
11.3.2TheSchiirAlgorithm,868
11.4PropertiesoftheLinearPrediction-ErrorFilters873
11.5ARLatticeandARMALattice-LadderFilters876
11.5.1ARLatticeStructure,877
11.5.2ARMAProcessesandLattice-LadderFilters,878
11.6WienerFiltersforFilteringandPrediction880
11.6.1FIRWienerFilter,881
11.6.20rthogonalityPrincipleinLinearMean-SquareEstimation,884
11.6.3IIRWienerFilter,885
11.6.4NoncausalWienerFilter,889
11.7SummaryandReferences890
Problems892
12POWERSPECTRUMESTIMATION898
12.1EstimationofSpectrafromFinite-DurationObservationsof
Signals896
12.1.1ComputationoftheEnergyDensitySpectrum,897
12.1.2EstimationoftheAutocorrelationandPowerSpectrumof
RandomSignals:ThePeriodogram,902
12.1.3TheUseoftheDFTinPowerSpectrumEstimation,906
12.2NonparametricMethodsforPowerSpectrumEstimation908
12.2.1TheBartlettMethod:AveragingPeriodograms,910
12.2.2TheWelchMethod:AveragingModifiedPeriodograms,911
12.2.3TheBlackmanandTukeyMethod:Smoothingthe
Periodogram,913
12.2.4PerformanceCharacteristicsofNonparametricPowerSpectrum
Estimators,916
12.2.5ComputationalRequirementsofNonparametricPowerSpectrum
Estimates,919
12.3ParametricMethodsforPowerSpectrumEstimation920
12.3.1RelationshipsBetweentheAutocorrelationandtheModel
Parameters,923
12.3.2TheYule-WalkerMethodfortheARModelParameters,925
12.3.3TheBurgMethodfortheARModelParameters,925
12.3.4UnconstrainedLeast-SquaresMethodfortheARModel
Parameters,929
12.3.5SequentialEstimationMethodsfortheARModelParameters,930
12.3.6SelectionofARModelOrder,931
12.3.7MAModelforPowerSpectrumEstimation,933
12.3.8ARMAModelforPowerSpectrumEstimation,934
12.3.9SomeExperimentalResults,936
12.4MinimumVarianceSpeCtralEstimation942
12.5EigenanalysisAlgorithmsforSpectrumEstimation946
12.5.1PisarenkoHarmonicDecompositionMethod,948
12.5.2Eigen-decompositionoftheAutocorrelationMatrixforSinusoids
inWhiteNoise,950
12.5.3MUSICAlgorithm,952
12.5.4ESPRITAlgorithm,953
12.5.5OrderSelectionCriteria,955
12.5.6ExperimentalResults,956
12.6SummaryandReferences959
Problems960
ARANDOMSIGNALS,CORRELATIONFUNCTIONS,ANDPOWER
SPECTRAA1
BRANDOMNUMBERGENERATORSB1
CTABLESOFTRANSITIONCOEFFICIENTSFORTHEDESIGNOF
LINEAR-PHASEFIRFILTERSCl
DLISTOFMATLABFUNCTIONSD1
REFERENCESANDBIBLIOGRAPHYR1
INDEX11

本目录推荐