Forward
Preface
ListofContributors
1AdvancedMagneticForceMicroscopyTipsforImagingDomains
1.1Introduction
1.2MagneticForceMicroscopy
1.2.1BasicOperatingPrinciplesofMFM
1.2.2ForceGradientDetection
1.2.3SensitivityandResolution
1.2.4Tip-SampleInteraction
1.2.5ForceSensor
1.3DevelopmentofAdvancedMFMTips
1.3.1HighCoercivityCoPtMFMTips
1.3.2SuperparamagneticandLowStrayMagneticFieldMFMTips
1.3.3Electron-Beam-Induced-Deposited(EBID)MFMTips
1.3.4Point-DipoleMFMTips
1.3.5FocusedIonBeamMillingMFMTips
References
2LorentzMicroscopyandHolographyCharacterizationofMagneticMaterials
2.1Introduction
2.2Instrumentation
2.3AnalyticalElectronMicroscopyforStructureCharacterization
2.3.1OutlineofCurrentAnalyticalElectronMicroscopy
2.3.2ThicknessMeasurementbyEELS
2.3.3ElementalMappingwithEDS
2.4LorentzMicroscopyonMagneticDomainStructure
2.4.1PrinciplesofLorentzMicroscopy
2.4.2LorentzMicroscopyUsingConventionalTransmissionElectronMicroscopes
2.4.3LorentzMicroscopyUsingScanningTransmissionElectronMicroscopes
2.5PrinciplesandApplicationofElectronHolography
2.5.1PrinciplesofElectronHolography
2.5.2PracticeofElectronHolography
2.5.3ApplicationofElectronHolography
2.6ConcludingRemarks
References
3CharacterizationofMagneticMaterialsbyMeansofNeutronScattering
3.1Introduction
3.1.1CrossSectionFormalism
3.1.2PolarizedNeutronBeaminstrumentation
3.1.3ThePolarizationoftheScatteredBeam
3.2ElasticMagneticScattering
3.2.1Small-AngleScattering
3.2.2NeutronDiffraction
3.2.3ReflectionofNeutronsfromMagneticSurfacesandInterfaces
3.3InelasticMagneticScattering
3.3.1StudiesofElementaryExcitationsbyTriple-axisSpectroscopy
3.3.2DetectionofSlowMotionsbyNeutronSpinEcho
3.4Summaries
References
4AdvancedTransmissionElectronMicroscopyofNanostrncturedMagneticMaterials
4.1Introduction
4.2SpecimenPreparation
4.2.1BulkSamples
4.2.2MagneticThinFilms
4.2.3MagneticNanowires
4.2.4MagneticPowders
4.2.5SpecialTechniques
4.3ElectronDiffraction
4.3.1SADPatternandtheRingPattern
4.3.2ConvergentBeamElectronDiffraction
4.3.3Nanodiffraction
4.4HighResolutionandSuper-ResolutionTEM
4.4.1AnImageProcessingModel
4.4.2ProcedureforImageReconstruction
4.4.3TestoftheImage-ProcessingModel
4.5SelectedReflectionImaging
4.5.1OriginationoftheTechnique
4.5.2ExperimentalMethodinConventionalTEM
4.5.3ApplicationofSRI
4.5.4ExperimentalSet-UpinaSTEM
4.6STEMandZ-ContrastImaging
4.7ElectronEnergyLossSpectroscopy
4.8ConcludingRemarks
References
5MossbauerSpectroscopyCharacterizationofSoftMagneticNanocrystallineAlloys
5.1Introduction
5.2MossbauerSpectroscopy
5.2.1PrinciplesoftheMossbauerEffect
5.2.2HyperfineInteractions
5.2.3Therf-MossbauerTechnique
5.3Experiment
5.3.1FormationoftheCrystallineNanostructureinAmorphousMatrix
5.3.2PrimaryCharacterizationofThermalStabilityofAmorphousPrecursor--FormationofNanostructure
5.4MossbauerStudyoftheStructureandMagnetismofFINEMET
Alloys
5.5MossbauerStudyoftheStructureandMagnetismof
NANOPERMAlloys
5.5.1ConventionalMossbauerStudies
5.5.2Therf-MossbauerStudies
5.6SurfaceandBulkNanocrystallizationofAmorphousFeCuNbSiBandFe-M-B-CuAlloys-theCEMSStudy
5.7ShortRangeOrderinAmorphousPrecursors--therf-MossbauerStudy
5.8DeterminationoftheGrainSizebyXRDandSAXSTechniques-CorrelationwiththeMossbauerResults
References
6AtomProbeCharacterizationo[MicrostructuresetNanocrystallineandNanocompositeMagneticMaterials
6.IIntroduction
6.2TheAtomProbeTechnique
6.3MicrostructuralEvolutioninNanocrystallineSoftMagneticMaterials
6.3.1FINEMET(Fe-Si-B-Nb-Cu)
6.3.2NANOPERM(Fe-Zr-B(-Cu))
6.3.3HITPERM((Fe,Co)-Zr-B-Cu)
6.4MicrostructuralEvolutioninNanocompositeMagnets
6.4.1Fe3B/Nd2Fe14BSystem
6.4.2α-Fe/NdFeBSystem
6.4.3AmorphousRemainingα-Fe/Nd2FeBNanocomposite
6.5RolesofMicroalloyedElementsinNanocrystallization
6.6EffectofHeatingRatesonNanocrystallineMicrostructureEvolution
6.7Summary
References
7Itinerant-ElectronMetamagnetism
7.1Introduction
7.2TheoreticalAspectsofItinerant-ElectronMetamagnetism
7.2.1LandauExpansionCoefficientsandMagneticPhaseDiagram
7.2.2ParamagneticSusceptibilityMaximumintheTemperatureDependence
7.3Itinerant-ElectronMetamagnetismofLaves-PhaseExchange-EnhancedPauliParamagnets
7.3.1MetamagneticTransitionintheGroundState
7.3.2RelationshipBetweentheSusceptibilityMaximumandtheTransitionField
7.3.3MetamagneticTransitionatFiniteTemperatures
7.4CorrelationBetweentheMagnetovolumeEffects
andMetamagneticTransition
7.4.1ConcentrationDependenceoftheCurieTemperatureandSpontaneousMagnetization
7.4.2PressureEffectsontheCurieTemperatureandSpontaneousMagnetization
7.4.3ThermalExpansionAnomalyandSpinFluctuations
7.5DeterminationoftheLandauCoefficients
7.5.1PressureEffectontheCriticalFieldoftheMetamagneticTransition
7.5.2ComparisonBetweentheExperimentalandTheoreticalMagneticPhaseDiagrams
7.6SuppressionofSpinFluctuationsinLaves-phaseMetamagnets
7.6.1ConcentrationDependenceoftheSpecificHeatCoefficientofLaves-PhaseCompounds
7.6.2LargeElectronicSpecificHeatCoefficientDuetoSpinFluctuationsandItsSuppressionUnderHighFields
7.7MetamagneticTransitionatFiniteTemperaturesofFerromagneticLa(Fe1-xSix)13NaZn13-typeCompounds
7.7.1MagnetizationandMagneticPhaseDiagram
7.7.2ThermalExpansionAnomaly
7.7.3PressureEffectontheMetamagneticTransition
7.7.4ControloftheMetamagneticTransitionbyHydrogenAbsorption
7.8DrasticChangesinMagneticandElectricalPropertiesandTheirPracticalApplications
7.8.1IsotropicGiantVolumeMagnetostriction
7.8.2GiantMagnetocaloricEffect
7.8.3GiantMagnetoresistance
7.9ConcludingRemarks
References
8ModelingofHysteresisinMagneticMaterials
8.1Introduction
8.2DevelopmentofModelTheoriesofHysteresis
8.3MagnetismattheDiscreteLevelofIndividualAtomsandBeyondtotheContinuumLevel:Landau-Lifschitz-GilbertModelandMicromagnetics
8.4MagnetismofDomainRotation.Stoner-Wohlfarth
8.5MagnetismattheLevelofDomainBoundaries:Neel,Globus-Guyot,Bertotti
8.6MagnetismattheMacroscopicScale:theIntegrationofSingleDomainSwitchingProcessesandthePreisachModel
8.7MagnetismattheMultidomainLevel:EnergyConsiderationsandtheJiles-AthertonModel
8.7.1DescriptionoftheAnhystereticMagnetization
8.7.2ExtensiontoDescribeHysteresis
8.7.3ExtensiontoDescribetheEffectsofStressonMagnetization
8.7.4ExtensiontoDescribetheEffectsofFrequencyonMagnetization
8.7.5Applications
8.8Summary
References
9Coarse-grainingandHierarchicalSimulationofMagneticMaterials:theFastMultipoleMethod
9.1Introduction
9.2TheFastMultipoleMethod:SimplestImplementation
9.3CartesianFormulationoftheFMM
9.4HistoryoftheFMM
9.5MicromagneticApplicationsoftheFMM
References
10NumericalSimulationofQuasistaticandDynamicRemagnetizationProcesseswithSpecialApplicationstoThinFilmsand
Nanoparticles
10.1BasicMicromagneticConceptsandMainEnergyContributions
10.2DiscretizationMethods.SimplicityandSpeedVersusExactShapeApproximation
10.2.1Regular(TranslationallyInvariant)Grids
10.2.2TetrahedronMesh
10.3EvaluationofVariousEnergyContributions
10.31AnisotropyEnergyinPolycrystallineSamples
10.32ExchangeEnergy:Node-supportedDiscretization,Heisenberg-LikeFormandAngle-based
Interpolation
10.33StrayFieldEvaluationonRegularGrids
10.4EnergyMinimizationMethods
10.4.1StandardMinimizationTechnique:ConjugateGradients
10.4.2EquationofMotionTechniquesandSimpleRelaxationMethods
10.4.3AdvancedRelaxationMethodsCombinedwiththeExtrapolationTechniques
10.4.4AlignmentMethods
10.5EquilibriumMagnetizationStructuresandQuasistaticRemagnetizationProcesses
10.5.1NanosizedMagneticElements
10.5.2ExtendedThinFilmsandPatternedStructures
10.5.3QuasistaticRemagnetizationinNanocomposites:
IndividualParticleSwitchingandCooperativeRemagnetizationProcesses
10.6EquilibriumandNon-EquilibriumThermodynamics:LangevinDynamics,MonteCarloMethodandPathIntegrals
10.6.1FastRemagnetizationProcesses:LangevinDynamicsvs.MonteCarloMethod
10.6.2SlowRemagnetizationDynamics
References
11PreisachModelandSimulationofRelaxationKinetics
11.1Introduction
11.2TheResponseOperator
11.3ThePreisachModel
11.4EnsemblesofSystemsinRandomPotential
11.5RepresentabilityoftheEnsembleEvolutionbythePM
11.6Connectionofthe"Classical"IrreversibilityParameterswiththePM
11.7RepresentationsofSomeEnsemblesbythePM
11.7.1CampbellRandomPotentialandStabilizationofDomainWalls
11.7.2PeriodicPotentialswithRandomPhase
11.8UncertaintyinPredictionofRelaxationKineticsBasedonthePM
11.9Summary
References
12AntiferromagnetismofMnAlloys
12.1Introduction
12.2TheoryofItinerantElectronMagnetismwiththeHubbardModel
12.2.1ModelfortheItinerantElectronSystems
12.2.2Path-IntegralApproachfortheItinerant-ElectronMagnetism
12.2.3SaddlePoint(MolecularField)Approximation
12.2.4RotationoftheLocalSpinAxesintheComplex
MagneticStructures
12.2.5MagneticExcitationEnergyandtheExchangeConstant
12.3FirstPrinciplesApproachfortheMagneticStructuresofTransitionMetalSystems
12.3.1Tight-binding(TB)-LMTOMethodforComplexMagneticStructures
12.3.2CoherentPotentialApproximation(CPA)forDisorderedAlloys
12.3.3EffectiveExchangeConstant
12.4ElectronicandMagneticStructuresofγ-MnandMnalloys
12.4.1γ-Mn
12.4.2FeMnDisorderedAlloy
12.4.3L10-TypeMnPt,MnNiandMnPdAlloys
12.4.4L12-Typeandγ-PhaseMn3IrAlloys
12.5ExperimentalObservationsofAntiferromagnetismofMnAlloys
12.5.1ConcentrationDependenceoftheNeelTemperatureofL12-type(≡γ'-Phase)MnOrderedAlloySystems
12.5.2ConcentrationDependenceoftheNeelTemperatureofγ-phaseMnDisorderedAlloySystems
12.5.3LatticeDistortionsandSpinStructuresofγ-phaseMnDisorderedAlloys
12.5.4ConcentrationDependenceoftheNeelTemperatureofL10(≡CuAu-I)-typeAlloySystems
12.5.5Low-temperatureSpecificHeatandTemperatureDependenceofElectricalResistivity
12.6AntiferromagneticPropertiesRelatedtoMagneticDevices
12.6.1MagnetovolumeEffectsandThermalStrains
12.6.2BlockingTemperatureandMagneticDomainsinAntiferromanets
12.6.3FrustrationofAntiferromagneticSpinStructuresandExchangeBiasField
12.7ConcludingRemarks
References
Index