Preface
Chapter1 Scaling Theory of Quantum Critical Phenomena
1.1 Quantum Phase Transitions
1.2 Renormalization Group and Scaling Relations
1.3 The Critical Exponents
1.4 Scaling Properties Close to a Zero Temperature Fixed Point
1.5 Extension to Finite Temperatures
Chapter2 Landau and Geussian Theories
2.1 Introduction
2.2 Landau Theory of Phase Transitions
2.3 Gaussian Approximation
2.4 Gaussian Approximation
2.5 Goldstone Mode
Chapter3 Renormalization Group:the c-expansion
3.1 The Landau-Wilson Functional
3.2 The Renormalization Group
Chapter4 Quantum Phase Transitions
4.1 Effective Action for a Nearly Ferromagnetic Metal
4.2 The Quantum Paramagnetic-to-Ferromagnetic Transition
4.3 Extension to Finite Temperatures
4.4 Effective A ction Close to a Spin Density Wave Instability
4.5 Gaussian Effective Actions
4.6 Field-Dependent Free Energy
Chapter5 Real Space Renormalization Group Approach
5.1 Introduction
5.2 The Ising Model in a Transverse Field
5.3 Conclusion
Chapter6 Heaavy Fermions
6.1 Introduction
6.2 Scaling Analysis
6.3 Conclusions
Chapter7 A Microscopic Model for Heavy Fermions
7.1 Introduction
7.2 Susceptibility and Wilson Ratio
7.3 Resistivity and Kadowaki-Woods Ratio
7.4 Critical Regime
7.5 Local Regime and One-Parameter Scling
……
Chapter8 Metal-Insulator Transitions
Chapter9 Density-Driven Metal-Insulator Transitions
Chapter10 Mott Transitions
Chapter11 The Non-Linear Sigma Model
Chapter12 Fluctuation-Induced Quantum Phase
Bibliography
Index