注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书教育/教材/教辅考试计算机考试实分析和概率论(英文版 第2版)

实分析和概率论(英文版 第2版)

实分析和概率论(英文版 第2版)

定 价:¥69.00

作 者: 达德利
出版社: 机械工业出版社
丛编项: 经典原版书库
标 签: 复分析

ISBN: 9787111193487 出版时间: 2006-07-01 包装: 简裝本
开本: 16开 页数: 555 字数:  

内容简介

  本书在两个方面获得了极佳的成功。一是它是一本全面、新颖的实分析教程,二是它是一本数学理论完整和自成体系的概率论教程。本书无疑给出了一种严谨和完整的新标准。 ——美国数学会公报 这是一本非凡的著作。在教学和参考两个方面本书将成为一本标准化教材,它全面地介绍了实分析的必备知识,且证明贯穿全书。一些主题和证明极少在其他教科书中见到。 ——爱丁堡数学会学报 严谨,精深,新颖,这是一本适用于数学专业研究生的教材。 ——ISI的简短书评 这是一本广受称赞的教科书,清晰地讲解了现代概率论以及度量空间与概率测度之间的相互作用。本书分两部分,第一部分介绍了实分析的内容,包括基本集合论、一般拓扑学、测度论、积分法、巴拿赫空间和拓扑空间中的泛函分析导论、凸集和函数、拓扑空间上的测度等。第二部分介绍了基于测度论的概率方面的内容,包括大数律、遍历定理、中心极限定理、条件期望、鞅收敛等。另外,随机过程一章 (第12章) 还介绍了布朗运动和布朗桥。 与前版相比,本版内容更完善,一开始就介绍了实数系的基础和泛代数中的一致逼近的斯通-魏尔斯特拉斯定理;修订和改进了几节的内容,扩充了大量历史注记;增加了很多新的习题,以及对一些习题的解答的提示。

作者简介

  502R.cM.cDudley,1麻省理工学院数学教授.a除本书外,1他还著有《DifferentiabilitycofcSixcOperatorsconcNonsmoothcFunctionscandcp-Variation》.c《UniformcCentralcLimitcTheorems》等书.a...1a1c1ac111c111a1a1

图书目录

Preface to the Cambridge Edition
1 Foundations; Set Theory
1.1 Definitions for Set Theory and the Real Number System
1.2 Relations and Orderings
* 1.3 Transfinite Induction and Recursion
1.4 Cardinality
1.5 The Axiom of Choice and Its Equivalents
2 General Topology
2.1 Topologies, Metrics, and Continuity
2.2 Compactness and Product Topologies
2.3 Complete and Compact Metric Spaces
2.4 Some Metrics for Function Spaces
2.5 Completion and Completeness of Metric Spaces
*2.6 Extension of Continuous Functions
*2.7 Uniformities and Uniform Spaces
*2.8 Compactification
3 Measures
3.1 Introduction to Measures
3.2 Semirings and Rings
3.3 Completion of Measures
3.4 Lebesgue Measure and Nonmeasurable Sets
*3.5 Atomic and Nonatomic Measures
4 Integration
4.1 Simple Functions
*4.2 Measurability
4.3 Convergence Theorems for Integrals
4.4 Product Measures
*4.5 Daniell-Stone Integrals
5 Lp Spaces; Introduction to Functional Analysis
5.1 Inequalities for Integrals
5.2 Norms and Completeness of LP
5.3 Hilbert Spaces
5.40rthonormal Sets and Bases
5.5 LinearForms on Hilbert Spaces, Inclusions of LP Spaces,
and Relations Between Two Measures
5.6 Signed Measures
6 Convex Sets and Duality of Normed Spaces
6.1 Lipschitz, Continuous, and Bounded Functionals
6.2 Convex Sets and Their Separation
6.3 Convex Functions
*6.4 Duality of Lp Spaces
6.5 Uniform Boundedness and Closed Graphs
*6.6 The Bmnn-Minkowski Inequality
7 Measure, Topology, and Differentiation,
7.1 Baire and Borel o-Algebras and Regularity of Measures
*7.2 Lebesgues Differentiation Theorems
*7.3 The Regularity Extension
*7.4 The Dual of C(K) and Fourier Series
*7.5 Almost Uniform Convergence and Lusins Theorem
8 Introduction to Probability Theory
8.1 Basic Definitions
8.2 Infinite Products of Probability Spaces
8.3 Laws of Large Numbers
*8.4 Ergodic Theorems
9 Convergence of Laws and Central Limit Theorems
9.1 Distribution Functions and Densities
9.2 Convergence of Random Variables
9.3 Convergence of Laws
9.4 Characteristic Functions
9.5 Uniqueness of Characteristic Functions
and a Central Limit Theorem
9.6 Triangular Arrays and Lindebergs Theorem
9.7 Sums of Independent Real Random Variables
*9.8 The Levy Continuity Theorem; Infinitely Divisible
and Stable Laws
10 Conditional Expectations and Martingales
10.1 Conditional Expectations
10.2 Regular Conditional Probabilities and Jensens
Inequality
10.3 Martingales
10.4 Optional Stopping and Uniform Integrability
10.5 Convergence of Martingales and Submartingales
* 10.6 Reversed Martingales and Submartingales
* 10.7 Subadditive and Superadditive Ergodic Theorems
11 Convergence of Laws on Separable Metric Spaces
11.1 Laws and Their Convergence
11.2 Lipschitz Functions
11.3 Metrics for Convergence of Laws
11.4 Convergence of Empirical Measures
11.5 Tightness and Uniform Tightness
*11.6 Strassens Theorem: Nearby Variables
With Nearby Laws
* 11.7 A Uniformity for Laws and Almost Surely Converging
Realizations of Converging Laws
* 11.8 Kantorovich-Rubinstein Theorems
* 11.9 U-Statistics
12 Stochastic Processes
12.1 Existence of Processes and Brownian Motion
12.2 The Strong Markov Property of Brownian Motion
12.3 Reflection Principles, The Brownian Bridge,
and Laws of Suprema
12.4 Laws of Brownian Motion at Markov Times:
Skorohod Imbedding
12.5 Laws of the Iterated Logarithm
13 Measurability: Borel Isomorphism and Analytic Sets
* 13.1 Borel Isomorphism
* 13.2 Analytic Sets
Appendix A Axiomatic Set Theory
A.1 Mathematical Logic
A.2 Axioms for Set Theory
A.3 Ordinals and Cardinals
A.4 From Sets to Numbers
Appendix B Complex Numbers, Vector Spaces,
and Taylors Theorem with Remainder
Appendix C The Problem of Measure
Appendix D Rearranging Sums of Nonnegative Terms
Appendix E Pathologies of Compact Nonmetric Spaces
Author Index
Subject Index
Notation Index

本目录推荐