Preface
Chapter1Preliminaries
1.1SomeBasicConceptsaboutEquivalences
1.2GrothendieckCategories
1.3TheMoritaTheoryofEquivalences
1.4BasicConceptsofCoalgebrasandComodules
Chapter2Fuller'sEquivalence
2.1DefinitionsandBasicFacts
2.2Fuller'sEquivalenceTheorems
2.3ThePropertiesofQuasi-progenerators
Chapter3EquivalencesStudiedbySatoandAzumaya
3.1Sato'sEquivalences
3.2Azumaya'sEquivalences
Chapter4ClassicalTiltingModulesandEquivalences
4.1TiltingTheoremforClassicalTiltingModules
4.2TheCharacterizationsofClassicalTiltingModules
4.3GeneralizedClassicalTiltingModules
Chapter5EquivalencesInducedbyModules
5.1RepresentableEquivalencesofSubcategories
5.2Every*-ModuleIsFinitelyGenerated
5.3SomeCharacterizationsofModules
Chapter6ApplicationsoftheTheoriesforModules
6.1SomeCharacterizationsofClassicalTiltingModulesbyModules
6.2EquivalencesBetweenProjective,InjectiveModules
6.3Examples
6.4RelationsBetweenSomeClassesInvolvedModules
6.5RecentDevelopmentsabouttheTiltingTheory
Chapter7Morita-LikeEquiralence
7.1Morita-LikeEquivalenceandXST-Rings
7.2MoritaTheoryforXST-Rings
Chapter8ACharacterizationforComoduleCategory
8.1TwoFunctors
8.2LocallyFiniteAbelianCategories
8.3ACharacterizationofComodulesCategories
Chapter9Morita-TakeuchiEquivalence
9.1Morita-TakeuchiPre-equivalenceData
9.2ConstructingaMorita-TakeuchiEquivalence
Chapter10StronglyEquivalences
10.1Morita'sTheoremforCoalgebras
10.2Lin'sTheoremforStrongEquivalence
10.3SomeImprovementsforStronglyEquivalence
10.4Examples
Chapter11QcFandConoetherianCoalgebras
11.1Introduction
11.2SomeCharacterizationsforQcF-coalgebras
11.3ConoetherianCoalgebras
Chapter12EquivalencesandTiltingComodules
12.1Co-NoetherianCoalgebras
12.2SomeBasicPropertiesforCo-Horn
12.3EquivalencesandClassicalTiltingComodules
Chapter13PropertiesPreservedbyEquivalences
13.1SomeBasicPropositionsPreservedbyM-TEquivalence
13.2PropositionsPreservedbyStronglyEquivalence
Chapter14AListofSomeOpenProblemsBibliography
Index