注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书教育/教材/教辅教材研究生/本科/专科教材Hardy-Littlewood 方法(第2版)

Hardy-Littlewood 方法(第2版)

Hardy-Littlewood 方法(第2版)

定 价:¥35.00

作 者: R.C.Vaughan
出版社: 世界图书出版公司
丛编项: Cambridge Tracts In Mathematics
标 签: 暂缺

购买这本书可以去


ISBN: 9787506239226 出版时间: 1998-08-01 包装: 平装
开本: 32开 页数: 232 字数:  

内容简介

  There have been two earlier Cambridge Tracts that have touched upon the Hardy-Littlewood method, namely those of Landau, 1937, and Estermann, 1952. However there has been no general account of the method published in the United Kingdom despite the not inconsiderable contribution of English scholars in inventing and developing the method and the numerous monographs that have appeared abroad. The purpose of this tract is to give an account of the classical forms of the method together with an outline of some of the more recent developments. It has been deemed more desirable to have this particular emphasis as many of the later applications make important use of the classical material.本书为英文版。

作者简介

暂缺《Hardy-Littlewood 方法(第2版)》作者简介

图书目录

     Contents
   Preface
   Preface to second edition
   Notation
   Introduction and historical background
    1.1 Waring's problem
    1.2 The Hardy-Littlewood method
    1.3 Goldbach's problem
    1.4 Other problems
    1.5 Exercises
   The simplest upper bound for G(k)
    2.1 The definition ofmajor and minor arcs
    2.2 Auxiliary lemmas
    2.3 The treatment of the minor arcs
    2.4 The major arcs
    2.5 The singular integral
    2.6 The singular series
    2.7 Summary
    2.8 Exercises
   Goldbach's problems
    3.1 The ternary Goldbach problem
    3.2 The binary Goldbach problem
    3.3 Exercises
   The major arcs in Waring's problem
    4.1 The generating function
    4.2 The exponential sum S(q, a)
    4.3 The singular series
    4.4 The contribution from the major arcs
    4.5 The congruence condition
    4.6 Exercises
   Vinogradov's methods
    5.1 Vinogradov's mean value theorem
    5.2 The transition from the mean
    5.3 The minor arcs in Waring's problem
    5.4 An upper bound for G(k)
    5.5 Wooley's refinement of Vinogradov's mean
    value theorem
    5.6 Exercises
   Davenport's methods
    6.1 Sets ofsums of kth powers
    6.2 G(4) = 16
    6.3 Davenport's bounds for G(5) and G(6)
    6.4 Exercises
   Vinogradov's upper bound for G(k)
    7.1 Some remarks on Vinogradov's mean
    value theorem
    7.2 Preliminary estimates
    7.3 An asymptotic formula for J(X)
    7.4 Vinogradov's upper bound for G(k)
    7.5 Exercises
   A ternary additive problem
    8.1 A general conjecture
    8.2 Statement of the theorem
    8.3 Definition of major and minor arcs
    8.4 The treatment of n
    8.5 The major arcs y(q.a)
    8.6 The singular series
    8.7 Completion of the proof of Theorem 8.
    8.8 Exercises
   Homogeneous equations and Birch's theorem
    9.1 Introduction
    9.2 Additive homogeneous equations
    9.3 Birch's theorem
    9.4 Exercises
   A theorem of Roth
    10.1 Introduction
    10.2 Roth's theorem
    10.3 A theorem of Furstenburg and Sarkozy
    10.4 The definition of major and minor arcs
    10.5 The contribution from the minor arcs
    10.6 The contribution from the major arcs
    10.7 Completion of the proof of Theorem 10.2
    10.8 Exercises
   Diophantine inequalities
    11.1 A theorem of Davenport and Heilbronn
    11.2 The definition of major and minor arcs
    11.3 The treatment of the minor arcs
    11.4 The major arc
    11.5 Exercises
   Wooley's upper bound for G(k)
    12.1 Smooth numbers
    12.2 The fundamental lemma
    12.3 Successive efficient differences
    12.4 A mean value theorem
    12.5 Wooley's upper bound for G(k)
    12.6 Exercises
    Bibliography
   Index
   

本目录推荐