Introduction
Foreword
PART Ⅰ Introduction
1 Ethernet Development:The Need for Speed
1.1 Ethernet Fundamentals
1.1.1 The Original Eghernet Goals
1.1.2 The Ethernet Non-Goals
1.1.3 CSMA/CD Operational Principles
1.1.4 The Elements of an Ethernet Network
1.2 The Development of Ethernet
1.2.1 First Generation Ethernet:10 Mbps Over Coaxial Cable
1.2.2 100BASE-T Ethernet:10 Mbps Over Voice-Grade Twisted-Pair Telephone Cable
1.2.3 100BASE-X Fast Ethernet:100 Mbps Over Copper and Optical Fiber Cables
1.2.4 Ethernet Switches:A Fast Ethernet Alternative
1.2.5 Gigabit Ethernet:1,000 Mbps Over Copper and Optical Fiber
1.3 The Evolution and Current State of Ethernet
1.3.1 Transmission Rate
1.3.2 Switches
1.3.3 The Star Topology and Its Effect on Network Installation
1.3.4 New Functional Capabilities
1.3.5 Perspective on the Original Ethernet Goals
1.3.6 Perspective on the Original Ethernet Non-Goals
1.4 A Cautionary Conclusion
2 The OSI and Gigabit Ethernet Standard Reference Models
2.1 The ISO/OSI Reference Model
2.1.1 Types of Network Services
2.1.2 Network Service Primitives
2.1.3 Network Communication Under the OSI Model
2.2 The Gigabit Ehternet Reference Model
2.2.1 Logical Link Control(LLC)Sublayer
2.2.2 The Media Access Control Sublayer Group
2.2.3 LLC/MAC Service Primitives
2.2.4 Service Primitive Definition
2.2.5 The Physical Sublayer Group
2.3 Summary
2.3.1 The OSI Model Revisited
2.3.2 Service Primitives Revisited
PART Ⅱ Network Access and Control
3 Media Access Control
3.1 MAC Overview
3.2 MAC Frame Formats
3.2.1 The Basic MAC Frame format
3.2.2 The MAC Control Frame Format
3.2.3 The VLAN-Tagged MAC Frame Format
3.3 Frame Transmission
3.3.1 Frame Assembly
3.3.2 Half-Duplex Transmission
3.3.3 Full-Duplex Transmission(in Switched-Based Networks)
3.3.4 Transmission of MAC Control Frames
3.3.5 Transmission of VLAN-Tagged Frames
3.4 Frame Reception
3.4.1 Address Recognition
3.4.2 Framing
3.4.3 FCS Validation
3.4.4 Frame Type Determination
3.4.5 Frame Disassembly and Forwarding
3.4.6 Collision Filtering
3.4.7 Invalid MAC frames
3.4.8 Error Recovery
3.5 Idle Mode
3.6 Summary
3.6.1 Speed-Related Differences
3.6.2 Operational Mode Differences
3.6.3 Frame Format-Related Differences
4 Gigabit Repeaters,Bridges,Routers,and Switches
4.1 Repeaters
4.1.1 Half-Duplex Repeaters
4.1.2 Full-Duplex Buffered Repeaters
4.1.3 Managed Repeaters
4.2 Bridges
4.2.1 MAC Relay Frame Transfer
4.2.2 Bridge Protocol Entity Frame Transfer
4.2.3 Network Configuration and Reconfiguration
4.2.4 Bridge Buffer Control and Transit Delay
4.3 Routers
4.3.1 Routing Protocols
4.4 Switches
4.4.1 Switch Architectures
4.4.2 Flow Control and Port Buffer Structure
4.4.3 Port Speed Handling
4.5 VLAN Tagging and Priority-Based Frame Transfer
4.6 Summary
PART Ⅲ Transmission Fundamentals
5 Fundamentals of Baseband Transmission
5.1 Simplex,Half-Duplex,and Full-Duplex Transmission
5.2 Transmitter Characteristics and Functions
5.2.1 Encoder
5.2.2 Multiplexer(MUX)
5.2.3 Modulator
5.2.4 Pulse-Shaping Filter
5.3 Receiver Characteristics and Functions
5.3.1 Demodulator
5.3.2 Demultiplexer(DEMUX)and Decoder
5.4 Noise,Signal-to-Noise Ratio(SNR),and Bit Errors
5.5 Eye Diagrams
5.5.1 Transmit Eye Diagrams
5.5.2 Receive Eye Diagrams
5.5.3 Eye Diagram Analysis
5.5.4 Eye Masks
5.6 Pulse Distortion Due to Filtering Effects
5.7 Equalization
5.7.1 Bandwidth Limited Equalization and receive Pulse Shapes
5.8 Line Coding
5.8.1 Transmit Pulse Encoding
5.8.2 Block Coding
5.9 Summary
6 Fundamentals of Fiber Optic Communication
6.1 Gigabit Ethernet Optical Links
6.2 Fundamental Design Constraints and Considerations
6.2.1 The Optical Power Budget
6.2.2 Cost Considerations
6.2.3 Inter-Operability Considerations
6.2.4 Optical Fiber Considerations
6.3 Light transmission Through Optical Fibers
6.3.1 Light Rays and Beams
6.3.2 The Three Basic Types of Light Rays
6.3.3 Rays and Modes
6.3.4 Modes:Electric Field and Intensity Patterns
6.3.5 Optical Fiber bandwidth and Attenuation
6.4 Transmitter Electronics and Light Sources
6.4.1 Light Emitting Diodes(LEDs)
6.4.2 Diode Lasers
6.4.3 Mode Partitioning and Mode Partition Noise(MPN)
6.4.4 Laser Transmit Electronics
6.5 Optical fiber Splices and Connectors
6.5.1 Modal Noise
6.6 Optical Signal Detectors
6.7 Summary
6.7.1 The 850 nm,1,300 nm,and 1,550 nm Wavelength Trade-Off
6.7.2 Optical Fiber Performance Comparison
PART Ⅳ The Common 1000BASE-X Physical Layers
7 The Common Physical Sublayers:Reconciliation and the GMII
7.1 PLS/GMII Transmit Signal Group
7.2 PLS/GMII Receive Signal Group
7.3 PLS(CSMA/CD)Status Signal Group
7.3.1 Carrier Sense
7.3.2 Collision Detect(COL)
7.4 GMII Network Management Signals and Associated Registers
7.4.1 Basic Register Functions
7.4.2 Extended Register Functions
7.5 Summary
8 Physical Coding,Physical Medium Attachment,and Auto-Negotiation for 1000BASE-X
8.1 Physical Layer Overview
8.1.1 The Gigabit Ethernet Simplex Link
8.1.2 An Implementation Example:The Network Interface Card
8.1.3 Physical Layer Functions and Interfaces
8.2 The Physical Media Attachment Sublayer
8.3 Ten-Bit Interface
8.3.1 TBI Transmitter
8.3.2 TBI Receiver
8.4 The Physical Coding Sublayer
8.4.1 PCS Carrier Sense
8.4.2 PCS Transmit
8.4.3 PCS Synchronization Function
8.4.4 PCS Receive Function
8.4.5 PCS Auto-Negotiation Function
8.5 Encapsulation of a MAC Frame into a Code-Group Stream
8.5.1 IDLE ordered_sets(I)
8.5.2 Start_of _Packet ordered_sets
8.5.3 End_of_Packet ordered_sets
8.5.4 Carrier_Extend ordered_sets
8.5.5 Error_Propagation ordered_sets
8.5.6 TX_EN,TX_ER,RX_EN,and RX_ER Signals
8.6 The 8B10B Code
8.7 Code-Group Encoding and Decoding
8.8 Summary
PART Ⅴ The 1000BASE-X media Dependent Layers
9 The Gigabit Ethernet Optical Link Model
9.1 Preliminaries:The IEEE 802.3 Worst-Case Design Philosophy
9.2 Introduction to the Optical Link Model
9.3 Pulse Widths,Bandwidths,and Transition Times
9.4 Fiber adn Channel Transition Times
9.4.1 Multimode Fiber Modal Bandwidth
9.4.2 Fiber Chromatic Bandwidth
9.5 The Extimction Ratio Power Penalty
9.6 Inter-Symbol Interference(ISI)
9.7 Cabled Fiber Attenuation
9.8 Connection Insertion Loss
9.9 Return Loss
9.10 Minimum received Inner Eye Opening
9.11 Mode Partition Noise
9.12 Relative Intensity Noise
9.13 Modal Noise Power Penalty Allocation
9.14 Additional Experimental Results
9.15 Deterministic Jitter Allocation
9.16 Example Power Budget
9.17 Summary
10 The Gigabit Ethernet Modal bandwidth Investigation
10.1 The Effective Modal Bandwidth Investigation
10.1.1 Gigabit Ethernet Link Model Worst-Case Operating Ranges
10.1.2 Gigabit Ethernet Jitter Budget Problems
10.2 The Modal Bandwidth Investigation
10.2.1 Radial Overfilled Launch(ROFL)
10.2.2 Resolving the Gigabit Ethernet Jitter Budget Problem
10.3 Offset Launch
10.3.1 Fiber DMD Values
10.3.2 Fiber Refractive Index Distortions
10.3.3 Worst-Case Fiber Simulation
10.3.4 Offset Launch Simulation Results
10.3.5 Experimental Verification of Offset Launch Operation
10.4 Summary
11 1000BASE-X:Optical Fiber and Copper PMDs
11.1 The Optical PMDs
11.1.1 Cable Model and Component Specifications
11.1.2 Optical Transmit Parameters
11.1.3 Optical Receive Parameters
11.1.4 Worst-Case Optical Power Budget Examples
11.2 The Short-Haul Copper PMD
11.2.1 1000BASE-CX Copper Link Model
11.2.2 Copper Transmitter
11.2.3 Copper Cable Assembly
11.2.4 Copper Receiver
11.3 Summary
PART Ⅵ Network Installation and System Considerations
12 The Cable Plant:Installation and Management
12.1 Structured Cabling
12.2 The Cable Plant Infrastructure
12.2.1 Fiber Optic Cable Installation Restrictions
12.2.2 Building Conduit and Cable Troughs
12.2.3 The Outside Cable Plant
12.2.4 As-Built Drawings
12.3 Network Cabling
12.3.1 Cable selection
12.3.2 Cable Testing and validation
12.3.3 The Cable Plant Database
12.4 Cable Plant Management
12.5 Cable Plant Security
12.6 Summary
13 Upgrading Ethernet LANs:System and topology Considerations
13.1 Justifying the Need for Network Upgrades
13.2 Opportunities for Upgrading Ethernet LANs
13.2.1 Quality of Service
13.2.2 Setting Up a CoS Transmission Path
13.3 Planning for a New Network or Network Upgrade
13.3.1 Brute Force Network Panning
13.3.2 Piecemeal Adds,Moves,and Changes
13.3.3 Total Network Planning
13.4 A Compromise Approach to Network Planning
13.4.1 Network Planning Objectives
13.4.2 Mitigating Factors in Planning for Ethernet LANs
13.4.3 Identifying Present and Potential User Populations
13.4.4 Network Architecture Considerations
13.4.5 Network Compatibility Considerations
13.4.6 Network Infrastructure Considerations
13.4.7 Defining the Network Plan
13.5 Summary
14 Gigabit Ethernet in Context with LAN Technologies
14.1 Commonly Installed LAN Technologies
14.1.1 Layer 2 LAN Summary:Token Ring
14.1.2 Layer 2 LAN Summary:FDDI
14.1.3 Layer 2 LAN Summary:100VG-AnyLAN
14.1.4 Layer 2 LAN Summary:ATM
14.1.5 Higher Layer Protocols for IP-Based Networks
14.1.6 Higher Layer Protocols for ATM-Based Networks
14.2 Network Upgrade Comparisons
14.2.1 Higher Speed Token Ring
14.2.2 FDDI
14.2.3 100VG-AnyLAN
14.2.4 Asynchronous Transfer Mode
14.3 Summary
15 The Future:Gigabit Ethernet and Beyond
15.1 1000BASE-T:Gigabit Ethernet over UTP Copper Cable
15.1.1 1000BASE-T Signal Transmission and Reception
15.1.2 1000BASE-T Cabling Considerations
15.2 Link Aggregation:Project 802.3ad
15.2.1 Link Aggregation Logical Model
15.2.2 Link Aggregation Functional Model
15.3 Extended Length Gigabit Ethernet Links
15.4 Gigabit Ethernet Implementation in MANs and WANs
15.4.1 QoS
15.4.2 Billing
15.4.3 Network Management
15.4.4 Link Protection and Restoration
15.5 Wavelength division Multiplexing and Gigabit Ethernet
15.5.1 Optical-Layer,Physical/Data Link Layer,and Layer 3 Link Protection and Restoration
15.6 Ten gigabit ethernet
15.6.1 The Need for Ten Gigabit Ethernet
15.6.2 Technical considerations
15.6.3 Single-Mode Fiber
15.6.4 Physical Layer Electronics Issues
15.6.5 Single Channel Line Coding Issues
15.7 Summary
15.8 Final Thoughts
APPENDIXES
A References and Other Sources of Additional Information
IEEE 802.3 Standards and Supplements
Other Standards
Books and Papers
B 8B10B Code Table
Glossary
Index