Introduction
PartI.BayesianImageAnalysis:Introduction
1.TheBayesianParadigm
1.1TheSpaceofImages
1.2TheSpaceofObservations
1.3PriorandPosteriorDistribution
1.4BayesianDecisionRules
2.CleaningDirtyPictures
2.1DistortionofImages
2.1.1PhysicalDigitalImagingSystems
2.1.2PosteriorDistributions
2.2Smoothing
2.3PiecewiseSmoothing
2.4BoundaryExtraction
3.RandomFields
3.1MarkovRandomFields
3.2GibbsFieldsandPotentials
3.3MoreonPotentials
PartII.TheGibbsSamplerandSimulatedAnnealing
4.MarkovChains:LimitTheorems
4.1Preliminaries
4.2TheContractionCoefficient
4.3HomogeneousMarkovChains
4.4InhomogeneousMarkovChains
5.SamplingandAnnealing
5.1Sampling
5.2SimulatedAnnealing
5.3Discussion
6.CoolingSchedules
6.1TheICMAlgorithm
6.2ExactMAPEVersusFastCooling
6.3FiniteTimeAnnealing
7.SamplingandAnnealingRevisited
7.1ALawofLargeNumbersforInhomogeneousMarkovChains.
7.1.1TheLawofLargeNumbers
7.1.2ACounterexample
7.2AGeneralTheorem
7.3SamplingandAnnealingunderConstraints
7.3.1SimulatedAnnealing
7.3.2SimulatedAnnealingunderConstraints
7.3.3SamplingwithandwithoutConstraints
PartIII.MoreonSamplingandAnnealing
8.MetropolisAlgorithms
8.1TheMetropolisSampler
8.2ConvergenceTheorems
8.3BestConstants,
8.4AboutVisitingSchemes
8.4.1SystematicSweepStrategies
8.4.2TheInfluenceofProposalMatrices
8.5TheMetropolisAlgorithminConfi)inatorialOptimization
8.6GeneralizationsandModifications
8.6.1Metropolis-HastingsAlgorithms
8.6.2ThresholdRandomSearch
9.AlternativeApproaches
9.1SecondLargestEigenvalues
9.1.1ConvergenceReproved
9.1.2SamplingandSecondLargestEigenvalues
9.1.3ContinuousTimeandSpace
10.ParallelAlgorithms
10.1PartiallyParallelAlgorithms
10.1.1SynchroneousUpdatingonIndependentSets
10.1.2TheSwendson-WangAlgorithm
10.2SynchroneousAlgorithms
10.2.1Introduction
10.2.2InvariantDistributionsandConvergence
10.2.3SupportoftheLimitDistribution
10.3SynchroneousAlgorithmsandReversibility
10.3.1Preliminaries
10.3.2InvarianceandReversibility
10.3.3FinalRemarks
PartIV.TextureAnalysis
11.Partitioning
11.1Introduction
11.2HowtoTellTexturesApart
11.3Features
11.4BayesianTextureSegmentation
11.4.1TheFeatures
11.4.2TheKohnogorov-SmirnovDistance
11.4.3APartitionModel
11.4.4Optimization
11.4.5ABoundaryModel
11.5Julesz'sConjecture
11.5.1Introduction
11.5.2PointProcesses
12.TextureModelsandClassification
12.1Introduction
12.2TextureModels
12.2.1The-Model
12.2.2TheAntohinomialModel
12.2.3Automodels
12.3TextureSynthesis
12.4TextureClassification
12.4.1GeneralRemarks
12.4.2ContextualClassification
12.4.3MPMMethods
PartV.ParameterEstimation
13.MaximumLikelihoodEstimators
13.1Introduction
13.2TheLikelihoodFunction
13.3ObjectiveFunctions
13.4AsymptoticConsistency
14.SpacialMLEstimation
14.1Introduction
14.2IncreasingObservationWindows
14.3ThePseudolikelihoodMethod
14.4TheMaximumLikelihoodMethod
14.5ComputationofMLEstimators
14.6PartiallyObservedData
PartVI.Supplement
15.AGlanceatNeuralNetworks
15.1Introduction
15.2BoltzmannMachines
15.3ALearningRule
16.MixedApplications
16.1Motion
16.2TomographicImageReconstruction
16.3BiologicalShape
PartVII.Appendix
A.SimulationofRandomVariables
A.1Pseudo-randomNumbers
A.2DiscreteRandomVariables
A.3LocalGibbsSamplers
A.4FurtherDistributions
A.4.1BinomialVariables
A.4.2PoissonVariables
A.4.3GaussianVariables
A.4.4TheRejectionMethod
A.4.5ThePolarMethod
B.ThePerron-FrobeniusTheorem.
C.ConcaveFunctions
D.AGlobalConvergenceTheoremforDescentAlgorithms
References
Index