注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学基于广义线性模型的多元统计建模(影印版)

基于广义线性模型的多元统计建模(影印版)

基于广义线性模型的多元统计建模(影印版)

定 价:¥68.00

作 者: Ludwig Fahrmeir,Gerhar Tutz
出版社: 北京世图
丛编项: Springer Texts in Statistics
标 签: 暂缺

购买这本书可以去


ISBN: 9787506238243 出版时间: 1998-08-01 包装: 胶版纸
开本: 大32 页数: 425 字数:  

内容简介

  本书主要讨论广义线性模型在单变量及多变量回归分析中的应用。书中通过生物学、经济学和社会学等方面多达60余个应用实例,对近年来广义线性模型新的科研成果作了系统介绍,内容新颖,实用性强。

作者简介

暂缺《基于广义线性模型的多元统计建模(影印版)》作者简介

图书目录

Preface
ListofExamples
ListofFigures
ListofTables
1Introduction
1.1Outlineandexamples
1.2Remarksonnotation
1.3Furtherreading
2Modellingandanalysisofcross-sectionaldata:areviewof
univariategeneralizedlinearmodels
2.1Univariategeneralizedlinearmodels
2.1.1Data
Codingofcovariates
Groupedandungroupeddata
2.1.2Definitionofunivariategeneralizedlinearmodels
2.1.3Modelsforcontinuousresponses
Normaldistribution
Gammadistribution
InverseGanssiandistribution
2.1.4Modelsforbinaryandbinomialresponses
Linearprobabilitymodel
Probitmodel
Logitmodel
Complementarylog-logmodel
Binarymodelsasthresholdmodelsoflatentlinear
models
Parameterinterpretation
Overdispersion
2.1.5Modelsforcounteddata
Log-linearPoissonmodel
LinearPoissonmodel
2.2Likelihoodinference
2.2.1Maximumlikelihoodestimation
Log-likelihood,scorefunctionandinformationmatrix
ComputationoftheMLEbyiterativemethods
UniquenessandexistenceofMLE's*
Asymptoticproperties
Discussionofregularityassumptions*
Additionalscaleoroverdispersionparameter
2.2.2Hypothesistestingandgoodness-of-fitstatistics
Goodness-of-fitstatistics
2.3Someextensions
2.3.1Quasi-likelihoodmodels
Basicmodels
Variancefunctionswithunknownparameters
Nonconstantdispersionparameter
2.3.2Bayesmodels
2.3.3Nonlinearandnonexponentialfamilyregression
models*
2.4Furtherdevelopments
Modelsformulticategoricalresponses:
multivariateextensionsofgeneralizedlinearmodels
3.1Multicategoricalresponsemodels
3.1.1Multinomialdistribution
3.1.2Data
3.1.3Themultivariatemodel
3.1.4Multivariategeneralizedlinearmodels
3.2Modelsfornominalresponses
3.2.1Theprincipleofmaximumrandomutility
3.2.2Modellingofexplanatoryvariables:choiceofdesign
matrix
3.3Modelsforordinalresponses
3.3.1Cumulativemodels:thethresholdapproach
Cumulativelogisticmodelorproportionaloddsmodel
GroupedCoxmodelorproportionalhazardsmodel
Extreme-maximal-valuedistributionmodel
3.3.2Extendedversionsofcumulativemodels
3.3.3Linkfunctionsanddesignmatricesforcumulative
models
3.3.4Sequentialmodels
Generalizedsequentialmodels
Linkfunctionsofsequentialmodels
3.3.5Strictstochasticordering*
3.3.6Two-stepmodels
Linkfunctionanddesignmatrixfortwo-stepmodels
3.3.7Alternativeapproaches*
3.4Statisticalinference
3.4.1Maximumlikelihoodestimation
Numericalcomputation
3.4.2Testingandgoodness-of-fit
Testingoflinearhypotheses
Goodness-of-fitstatistics
3.4.3Power-divergencefamily*
Asymptoticpropertiesunderclassical"fixedcells"
assumptions
Sparsenessand"increasing-cells"asymptotics
3.5Multivariatemodelsforcorrelatedresponses
3.5.1Conditionalmodels
Asymmetricmodels
Symmetricmodels
3.5.2Marginalmodels
Statisticalinference
Selectingandcheckingmodels
4.1Variableselection
4.1.1Selectioncriteria
4.1.2Selectionprocedures
All-subsetsselection
Stepwisebackwardandforwardselection
4.2Diagnostics
4.2.1Diagnostictoolsfortheclassicallinearmodel
4.2.2Generalizedhatmatrix
4.2.3Residualsandgoodness-of-fitstatistics
4.2.4Casedeletion
4.3Generaltestsformisspecification*
4.3.1Estimationundermodelmisspecification
4.3.2Hausman-typetests
Hansmantests
Informationmatrixtest
4.3.3Testsfornon-nestedhypotheses
Testsbasedonartificialnesting
GeneralizedWaldandscoretests
5Semi-andnonparametricapproachestoregression
analysis
5.1Smoothingtechniquesforcontinuousresponses
5.1.1Simpleneighbourhoodsmoothers
5.1.2Splinesmoothing
Cubicsmoothingsplines
Regressionsplines
5.1.3Kernelsmoothing
Relationtoothersmoothers
Bias-variancetrade-off
5.1.4Selectionofsmoothingparameters*
5.2Kernelsmoothingwithmulticategoricalresponse
5.2.1Kernelmethodsfortheestimationofdiscrete
distributions
5.2.2Smoothedcategoricalregression
5.2.3Choiceofsmoothingparameters*
5.3Splinesmoothingingeneralizedlinearmodels
5.3.1Cubicsplinesmoothingwithasinglecovariate
Fisherscoringforgeneralizedsplinesmoothing*
Choiceofsmoothingparameter
5.3.2Generalizedadditivemodels
Fisherscoringwithbackfitting*
6Fixedparametermodelsfortimeseriesand
longitudinaldata
6.1Timeseries
6.1.1Conditionalmodels
Generalizedautoregressivemodels
Quasi-likelihoodmodelsandextensions
6.1.2Statisticalinferenceforconditionalmodels
6.1.3Marginalmodels
Estimationofmarginalmodels
6.2Longitudinaldata
6.2.1Conditionalmodels
Generalizedautoregressivemodels,quasi-likelihood
models
Statisticalinference
Transitionmodels
Subject-specificapproachesandconditional
likelihood
6.2.2Marginalmodels
Statisticalinference
Randomeffectsmodels
7.1Linearrandomeffectsmodelsfornormaldata
7.1.1Two-stagerandomeffectsmodels
Randomintercepts
Randomslopes
Multilevelmodels
7.1.2Statisticalinference
Knownvariance-covariancecomponents
Unknownvariance-covariancecomponents
DerivationoftheEM-algorithm*
7.2Randomeffectsingeneralizedlinearmodels
7.3Estimationbasedonposteriormodes
7.3.1Knownvariance-covariancecomponents
7.3.2Unknownvariance-covariancecomponents
7.3.3Algorithmicdetails*
Fisherscoringforgivenvariance-covariance
components
EM-typealgorithm
7.4Estimationbyintegrationtechniques
7.4.1Maximumlikelihoodestimationoffixedparameters
7.4.2Posteriormeanestimationofrandomeffects
7.4.3Algorithmicdetails*
Directmaximization
Indirectmaximization
Posteriormeanestimation
7.5Examples
7.6Marginalestimationapproachtorandomeffectsmodels
7.7Furtherapproaches
Statespacemodels
8.1LinearstatespacemodelsandtheKalmanfilter
8.1.1Linearstatespacemodels
8.1.2Statisticalinference
LinearKalmanfilteringandsmoothing
Kalmanfilteringandsmoothingasposteriormode
estimation*
Unknownhyperparameters
EM-algorithmforestimatinghyperparameters*
8.2Non-normalandnonlinearstatespacemodels
8.2.1Dynamicgeneralizedlinearmodels
Categoricaltimeseries
8.2.2Nonlinearandnonexponentialfamilymodels*
8.3Non-normalfilteringandsmoothing
8.3.1Posteriormodeestimation
GeneralizedextendedKalmanfilterandsmoother*
Gauss-NewtonandFisher.coringfilteringand
smoothing*
Estimationofhyperparameters*
Someapplications
8.3.2Posteriormeanestimation
AGibbssamplingapproach*
Integration-basedapproaches*
8.4Longitudinaldata
8.4.1Statespacemodellingoflongitudinaldata
8.4.2Filteringandsmoothing
GeneralizedKalmanfilterandsmootherfor
longitudinaldata*
9Survivalmodels
9.1Modelsforcontinuoustime
9.1.1Basicmodels
Exponentialdistribution
Weibulldistribution
9.1.2Parametricregressionmodels
Location-scalemodelsforlogT
Proportionalhazardsmodels
Lineartransformationmodelsandbinaryregression
models
9.1.3Censoring
Randomcensoring
TypeIcensoring
9.1.4Estimation
Exponentialmodel
Weibullmodel
9.2Modelsfordiscretetime
9.2.1Lifetableestimates
9.2.2Parametricregressionmodels
Thegroupedproportionalhazardsmodel
Ageneralizedversion:themodelofAranda-Ordaz
Thelogisticmodel
Sequentialmodelandparameterizationofthe
baselinehazard
9.2.3Maximumlikelihoodestimation
9.2.4Time-varyingcovariates
Internalcovariates*
Maximumlikelihoodestimation*
9.3Discretemodelsformultiplemodesoffailure
9.3.1Basicmodels
9.3.2Maximumlikelihoodestimation
9.4Smoothingindiscretesurvivalanalysis
9.4.1Dynamicdiscretetimesurvivalmodels
Posteriormodesmoothing
9.4.2Kernelsmoothing
AppendixA
A.1Exponentialfamiliesandgeneralizedlinearmodels
A.2Basicideasforasymptotics
A.3EM-algorithm
A.4Numericalintegration
A.5MonteCarlomethods
AppendixBSoftwareforfittinggeneralizedlinearmodels
References
AuthorIndex
SubjectIndex

本目录推荐