PrefacetotheSixthEdition
Acknowledgments
Theorderofpresentationoftheformulas
Useofthetables
Specialfunctions
Notation
Noteonthebibliographicreferences
Introduction
0.1Finitesums
0.2Numericalseriesandinfiniteproducts
0.3Functionalseries
0.4Certainformulasfromdifferentialcalculus
1.1PowerofBinomials
1.2TheExponentialFunction
1.3-1.4TrigonometricandHyperbolicFunctions
1.5
1.6TheInverseTrigonometricandHyperbolicFunctions
2IndefiniteIntegralsofElementaryFunctions
2.0Introduction
2.1Rationalfunctions
2.2Algebraicfunctions
2.3TheExponentialFunction
2.4HyperbolicFunctions
2.5-2.6TrigonometricFunctions
2.7LogarithmsandInverse-HyperbolicFunctions
2.8InverseTrigonometricFunctions
3-4DefiniteIntegralsofElementaryFunctions
3.0Introduction
3.1-3.2PowerandAlgebraicFunctions
3.3-3.4ExponentialFunctions
3.5HyperbolicFunctions
3.6-4.1TrigonometricFunctions
4.2-4.4LogarithmicFunctions
4.5InverseTrigonometricFunctions
4.6MultipleIntegrals
5IndefiniteIntegralsofSpecialFunctions
5.1EllipticIntegralsandFunctions
5.2TheExponentialIntegralFunction
5.3TheSineIntegralandtheCosineIntegral
5.4TheProbabilityIntegralandFresnelIntegrals
5.5BesselFunctions
6-7DefiniteIntegralsofSpecialFunctions
6.1EllipticIntegralsandFunctions
6.2-6.3TheExponentialIntegralFunctionandFunctionsGeneratedbyIt
6.4TheGammaFunctionandFunctionsGeneratedbyIt
6.5-6.7BesselFunctions
6.8FunctionsGeneratedbyBesselFunctions
6.9MathieuFunctions
7.1-7.2AssociatedLegendreFunctions
7.3-7.4OrthogonalPolynomials
7.5HypergeometricFunctions
7.6ConfluentHypergeometricFunctions
7.7ParabolicCylinderFunctions
7.8Meijer'sandMacRobert'sFunctions(GandE)
8-9SpecialFunctions
8.1Ellipticintegralsandfunctions
8.2TheExponentialIntegralFunctionandFunctionsGeneratedbyIt
8.3Euler'sIntegralsoftheFirstandSecondKinds
8.4-8.5BesselFunctionsandFunctionsAssociatedwithThem
8.6MathieuFunctions
8.7-8.8AssociatedLegendreFunctions
8.9OrthogonalPolynomials
9.1HypergeometricFunctions
9.2ConfluentHypergeometricFunctions
9.3Meijer'sG-Function
9.4MacRobert'sE-Function
9.5Riemann'sZetaFunctions(z,q),and(z),andtheFunctions(z,s,v)and(s)
9.6Bernoullinumbersandpolynomials,Eulernumbers
9.7Constants
10VectorFieldTheory
10.1-10.8Vectors,VectorOperators,andIntegralTheorems
11AlgebraicInequalities
11.1-11.:3GeneralAlgebraicInequalities
12IntegralInequalities
12.11Meanvaluetheorems
12.21Differentiationofdefiniteintegralcontainingaparameter
12.31Integralinequalities
12.41ConvexityandJensen'sinequality
12.51Fourierseriesandrelatedinequalities
13Matricesandrelatedresults
13.11-13.12Specialmatrices
13.21Quadraticforms
13.31Differentiationofmatrices
13.41Thematrixexponential
14Determinants
14.11Expansionofsecond-andthird-orderdeterminants
14.12Basicproperties
14.13Minorsandcofactorsofadeterminant
14.14Principalminors
14.15Laplaceexpansionofadeterminant
14.16Jacobi'stheorem
14.17Hadamard'stheorem
14.18Hadamard'sinequality
14.21Cramer'srule
14.31Somespecialdeterminants
15Norms
15.1-15.9VectorNorms
15.11Generalproperties
15.21Principalvectornorms
15.31Matrixnorms
15.41Principalnaturalnorms
15.51Spectralradiusofasquarematrix
15.61Inequalitiesinvolvingeigenvaluesofmatrices
15.71Inequalitiesforthecharacteristicpolynomial
15.81-15.82Namedtheoremsoneigenvalues
15.91Variationalprinciples
16Ordinarydifferentialequations
16.1-16.9Resultsrelatingtothesolutionofordinarydifferentialequations
16.tlFirst-orderequations
16.21Fundamentalinequalitiesandrelatedresults
16.31First-ordersystems
16.41Somespecialtypesofelementarydifferentialequations
16.51Second-orderequations
16.61-16.62Oscillationandnon-oscillationtheoremsforsecond-orderequations
16.71Tworelatedcomparisontheorems
16.81-16.82Non-oscillatorysolutions
16.91Somegrowthestimatesforsolutionsofsecond-orderequations
16.92Boundednesstheorems
17Fourier,Laplace,andMellinTransforms
17.1-17.4IntegralTransforms
18Thez-transform
18.1-18.3Definition,Bilateral,andUnilateralz-Transforms
References
Supplementalreferences
Functionandconstantindex
Generalindex