注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络计算机科学理论与基础知识离散数学(基础与提高影印版)

离散数学(基础与提高影印版)

离散数学(基础与提高影印版)

定 价:¥39.00

作 者: 罗瓦茨、培理肯、维斯特冈比
出版社: 清华大学出版社
丛编项:
标 签: 离散数学

购买这本书可以去


ISBN: 9787302138266 出版时间: 2006-09-01 包装: 平装
开本: 16 页数: 290 字数:  

内容简介

  本书包括组合、图论及它们在优化和编码等领域的应用。全书只有约30(J页,但涵盖了信息领域一些广泛而有趣的应用,及离散数学领域新颖而前沿的研究课题。本书非常适合计算机科学、信息与计算科学等专业作为"离散数学"引论课程的教材或参考书。

作者简介

暂缺《离散数学(基础与提高影印版)》作者简介

图书目录

Preface
1 Let s Count!
1.1 A Party
1.2 Sets and the Like
1.3 The Nunmber of Subsets
1.4 The Approximate Number of Subsets
1.5 Sequences
1.6 Permutations
1.7 The Number of Ordered Subsets
1.8 The Number of Subsets of a Given Size
2 Combinatorial Tools
2.1 Induction
2.2 Comparing and Estimationg numbers
2.3 Inclusion-Exclusion
2.4 Pigeonholes
2.5 The Twin Paradox and the Good Old Logarithm
3 Binomial Coefficients and Pascal s Triangle
3.1 The Binomial Theorem
3.2 Distributing Presents
3.3 Anagrams
3.4 Distributing Money
3.5 Pascal s Trianglc
3.6 Identities in pascal s Triangle
3.7 A Bird s -Eye View of Pascal s Triangle
3.8 All Eagle s -Eye View:Fine Details
4 Fibonacci Numbers
4.1 Fibonacci s Exercise
4.2 Lots of Identities
4.3 A Formula for the Fibonacci Nunbers
5 Combinatorial Probability
5.1 Events and Probabilities
5.2 Independent Repetition of an Experiment
5.3 The Law of Large Numbers
5.4 The Law of Small Numbers and t he Law of Very Large Nmmbers
6 Integers,Divisors and Primes
6.1 Divisibility of Integers
6.2 Primes and Their History
6.3 Factorization into Primes
6.4 On the Set of primes
6.5 Fermat s Little Theorem
6.6 The Fuclidean lgorithm
6.7 Congruences
6.8 Strange Numbers
6.9 Nunber Theory and Combiatorics
6.10 How to Test Whether a Number is a Prime?
7 Graphs
7.1 Even and Odd Dergrees
7.2 Paths Cycles and Connectivitry
7.3 Eulerian Walkd and Hamiltnian Cycles
8 Trees
8.1 How to Define Trees
8.2 How to Grow Trees
8.3 HOw to Count Trees?
8.4 How to Store Trees
8.5 The Number of Unlabeled Trees
9 Finding the Optimum
9.1 Finding the Best Tree
9.2 The Traveling Salesman Problem
10 Matvchings in Graphs
10.1 A Dancing Problem
……
11 Combinatorics in Geometry
12 Euler s Formula
13 Coloring Maps and Graphs
14 Finite Geometries,Codes,Latin Squares,and Other Pretty Creatures
15 A Glimpse of COmplexity and Cryptography
16 Answers to Exercises
Index

本目录推荐