模式识别是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。它是信息科学和人工智能的重要组成部分,主要应用领域是图像分析与处理、语音识别、声音分类、通信、计算机辅助诊断、数据挖掘等学科。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、动态编程和用于顺序数据的隐马尔可夫模型、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,主要更新了关于支持向量机和聚类算法的内容,重点研究了图像分析、语音识别和声音分类的特征生成。每章末均提供有习题与练习,且支持网站上提供有习题解答,以便于读者增加实际经验。.本书可作为高等院校自动化、计算机、电子和通信等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。..本书综合考虑了有监督和无监督模式识别的经典理论与实践以及当前的理论与实践,为专业技术人员和高校学生建立起了完整的基本知识体系。本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法以及各种应用。每章的开始是基本原理介绍,然后是最新研究问题和关键技术讨论,最后是习题。习题解答和仿真程序可到网站http://www.di,uoa.gr/-stpatrec下载。本书第三版的具体内容包括:贝叶斯分类、贝叶斯网络、线性和非线性分类器(包含神经网络和支持向量机)、动态规划和用于顺序数据的隐马尔可夫模型、特征生成(包含小波、主成分分析、独立成分分析和分形)、特征选择技术、自学习理论的基本概念、聚类概念和算法等。...