注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学平衡统计物理学(第二版 英文影印版)

平衡统计物理学(第二版 英文影印版)

平衡统计物理学(第二版 英文影印版)

定 价:¥50.00

作 者: (加)普里斯科、(加)伯格森
出版社: 复旦大学出版社
丛编项:
标 签: 物理实验

购买这本书可以去


ISBN: 9787309052008 出版时间: 2006-11-01 包装: 平装
开本: 32 页数: 520 字数:  

内容简介

  这是针对从事物理、化学和材料科学的研究生和高年级本科生的专业需求编写的统计物理教材。早在1980年,作者们发现由K.G.Wilson率先将重整化群方法引入临界现象并取得成功之后,凝聚态物理的研究进入了飞速发展的黄金时代,因此认为研究生的早期教学工作应当反映这方面的动态。为此于1989年率先由Prentice-Hall出版公司出版了反映这方面特色的《平衡统计物理学》,1994年经过修订,转到World Scientific出版了本书第一版,1999年出版了第二版,现在呈现在读者面前的是2003年的版本。全书共分11章,前两章分别复习热力学和统计系统理论,这部分内容既是读者学习后面各章的基础,也是为了本科期间没有接触过热力学和统计物理的学生设计的。两章都有大量习题,可以帮助读者加深理解。后面各章分别讲述平均场和朗道理论、致密气体和液体、临界现象的二维伊辛模型、级数展开、标度律、重整化群方法等。第七章介绍动力学模拟方法。八、九、十、十一各章介绍统计物理最活跃的应用领域:聚合物和薄膜、量子流体、线性响应理论、无序系统等。由于本书的后半部分涉及二次量子化的概念,因此在附录中补充了占有数表象的内容。本书每章都有不少的习题,越到后面各章,习题的难度越来越有挑战性。作者们还专门编写了《习题解答》,有需要的教师或读者可通过互联网(http://www.worldscibooks.com/physics/4485.html)查找。

作者简介

  Michael Plischke加拿大Simon Fraser大学物理系主任,教授。芝加哥Loyola大学物理学学士,Yale大学物理学硕士,Yeshiva大学物理学博士,长期从事凝聚态物理研究,并给硕士生和本科生讲授统计力学。Equilibrium Statistical Physics和Physics and Chemistry of Disordered Systems等是其代表性的著作。Birger Bergersen 加拿大British Columbia大学物理和天文系荣誉退休教授。给硕士生和本科生讲授热力学和统计物理长达30多年,Equilibrium Statistical Physics一书就是其重要的学术著作。

图书目录

Contents
Preface to the First Edition
Preface to the Second Edition
1 Review of Thermodynamics
 1.1 State Variables and Equations of State
 1.2 Laws of Thermodynamics
 1.2.1 First law
 1.2.2 Second law
 1.3 Thermodynamic Potentials
 1.4 Gibbs-Duhem and Maxwell Relations
 1.5 Response Functions
 1.6 Conditions for Equilibrium and Stability
 1.7 Thermodynamics of Phase Transitions
 1.8 Problems
2 Statistical Ensembles
 2.1 Isolated Systems: MicrocanonicalEnsemble
 2.2 Systems at Fixed Temperature: Canonical Ensemble
 2.3 Grand Canonical Ensemble
 2.4 Quantum Statistics
 2.4.1 Harmonic oscillator
 2.4.2 Noninteracting fermions
 2.4.3 Noninteracting bosons
 2.4.4 Density matrix
 2.5 Maximum Entropy Principle
 2.6 Thermodynamic Variational Principles
 2.7 Problems
3 Mean Field and Landau Theory
 3.1 Mean Field Theory of the Ising Model
 3.2 Bragg-Williams Approximation
 3.3 Order Disorder Transition
 3.4 Bethe Approximation
 3.5 Critical Behavior of Mean Field Theories
 3.6 Ising Chain: Exact Solution
 3.7 Landau Theory of Phase Transitions
 3.8 Example of Symmetry Considerations: Maier-Saupe Model
 3.9 Landau Theory of Tricritical Points
 3.10 Landau-Ginzburg Theory for Fluctuations
 3.11 Multicomponent Order Parameters: n-Vector Model
 3.12 Mean Field Theory of Fluids: Van der Waals Approach
 3.13 Problems
4 Dense Gases and Liquids
 4.1 Virial Expansion
 4.2 Distribution Functions
  4.2.1 Pair correlation function
  4.2.2 BBGKY hierarchy
  4.2.3 Ornstein-Zernike equation
 4.3 Perturbation Theory
 4.4 Inhomogeneous Liquids
  4.4.1 Liquid-vapor interface
  4.4.2 Capillary waves
 4.5 Density-Functional Theory
  4.5.1 Functional differentiation
  4.5.2 Free-energy functionals and correlation functions
  4.5.3 Applications
 4.6 Problems
5 Critical Phenomena I
 5.1 Ising Model in Two Dimensions
  5.1.1 Transfer matrix
  5.1.2 Transformation to an interacting fermion problem
  5.1.3 Calculation of eigenvalues
  5.1.4 Thermodynamic functions
  5.1.5 Concluding remarks
 5.2 Series Expansions
  5.2.1 High-temperature expansions
  5.2.2 Low-temperature expansions
  5.2.3 Analysis of series
 5.3 Scaling
  5.3.1 Thermodynamic considerations
  5.3.2 Scaling hypothesis
  5.3.3 Kadanoff block spins
 5.4 Finite-Size Scaling
 5.5 Universality
 5.6 Kosterlitz-Thouless Transition
 5.7 Problems
6 Critical Phenomena II: The Renormalization Group
 6.1 The Ising Chain Revisited
 6.2 Fixed Points
 6.3 Position Space Renormalization: Cumulant Method
  6.3.1 First-order approximation
  6.3.2 Second-order approximation
 6.4 Other Position Space RenormalizationGroup Methods
  6.4.1 Finite lattice methods
  6.4.2 Adsorbed monolayers: Ising antiferromagnet
  6.4.3 Monte Carlo renormalization
 6.5 Phenomenological Renormalization Group
 6.6 The e-Expansion
  6.6.1 The Gaussian model
  6.6.2 The S4 model
  6.6.3 Critical exponents to order ε
  6.6.4 Conclusion
 6.7 Problems
7 Simulations
 7.1 Molecular Dynamics
 7.2 Monte Carlo Method
  7.2.1 Markov processes
  7.2.2 Detailed balance and the Metropolis algorithm
  7.2.3 Histogram methods
 7.3 Data Analysis
  7.3.1 Fluctuations
  7.3.2 Error estimates
  7.3.3 Extrapolation to the thermodynamic limit
 7.4 The Hopfield Model of Neural Nets
 7.5 Simulated Quenching and Annealing
 7.6 Problems
8 Polymers and Membranes
 8.1 Linear Polymers
  8.1.1 The freely jointed chain
  8.1.2 The Gaussian chain
 8.2 Excluded Volume Effects: Flory Theory
 8.3 Polymers and the n-Vector Model
 8.4 Dense Polymer Solutions
 8.5 Membranes
  8.5.1 Phantom membranes
  8.5.2 Self-avoiding membranes
  8.5.3 Liquid membranes
 8.6 Problems
9 Quantum Fluids
 9.1 Bose Condensation
 9.2 Superfluidity
  9.2.1 Qualitative features of superfluidity
  9.2.2 Bogoliubov theory of the aHe excitation spectrum
 9.3 Superconductivity
  9.3.1 Cooper problem
  9.3.2 BCS ground state
  9.3.3 Finite-temperature BCS theory
  9.3.4 Landau-Ginzburg theory of superconductivity
 9.4 Problems
10 Linear Response Theory
 10.1 Exact Results 378
  10.1.1 Generalized susceptibility and the structure factor
  10.1.2 Thermodynamic properties
  10.1.3 Sum rules and inequalities
 10.2 Mean Field Response
  10.2.1 Dielectric function of the electron gas
  10.2.2 Weakly interacting Bose gas
  10.2.3 Excitations of the Heisenberg ferromagnet
  10.2.4 Screening and plasmons
  10.2.5 Exchange and correlation energy
  10.2.6 Phonons in metals
 10.3 Entropy Production, the Kubo Formula, and the Onsager Relations for Transport Coefficients
  10.3.1 Kubo formula
  10.3.2 Entropy production and generalized currents and forces
  10.3.3 Microscopic reversibility: Onsager relations
 10.4 The Boltzmann Equation
  10.4.1 Fields, drift and collisions
  10.4.2 DC conductivity of a metal
  10.4.3 Thermal conductivity and thermoelectric effects
 10.5 Problems
11 Disordered Systems
 11.1 Single-Particle States in Disordered Systems
  11.1.1 Electron states in one dimension
  11.1.2 Transfer matrix
  11.1.3 Localization in three dimensions
  11.1.4 Density of states
 11.2 Percolation
  11.2.1 Scaling theory of percolation
  11.2.2 Series expansions and renormalization group
  11.2.3 Conclusion
 11.3 Phase Transitions in Disordered Materials
  11.3.1 Statistical formalism and the replica trick
  11.3.2 Nature of phase transitions
 11.4 Strongly Disordered Systems
  11.4.1 Molecular glasses
  11.4.2 Spin glasses
  11.4.3 Sherrington-Kirkpatrick model
 11.5 Problems
Appendix: Occupation Number Representation
Bibliography
Index

本目录推荐