注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学运筹学导论:高级篇(英文版·第8版)

运筹学导论:高级篇(英文版·第8版)

运筹学导论:高级篇(英文版·第8版)

定 价:¥59.00

作 者: (美)塔哈
出版社: 人民邮电出版社
丛编项: 图灵原版数学·统计学系列
标 签: 运筹学

购买这本书可以去


ISBN: 9787115160652 出版时间: 2007-07-01 包装: 平装
开本: 小16开 页数: 1001 字数:  

内容简介

  《运筹学导论:高级篇(英文版·第8版)》是运筹学方面的经典著作之一,为全球众多高校采用。 高级篇共12章,内容包括高级线性规划、概率论基础复习、概率库存模型、模拟模型、马尔可夫链、经典最优化理论、非线性规划算法、网络和线性规划算法进阶、预测模型、概率动态规划、马尔可夫决策过程、案例分析等,并附有统计表、部分习题的解答、向量和矩阵复习及案例研究。《运筹学导论:高级篇(英文版·第8版)》可供经管类专业和数学专业研究生以及MBA作为教材或者参考书,也可供相关研究人员参考。

作者简介

  Hamdy A.Taha 美国阿肯色大学荣休教授,世界知名运筹学家,曾在全球各地教和担任顾问,同时拥有非常丰富的教学研究和实践经验。他在Management Science和Operations Research等世界顶级学术刊物上发表了大量论文。

图书目录

Chapter 13 Advanced Linear Programming  
 13.1 Simplex Method Fundamentals  
  13.1.1 From Extreme Points to Basic Solutions  
  13.1.2 Generalized Simplex Tableau in Matrix Form  
 13.2 Revised Simplex Method  
  13.2.1 Development of the Optimality and FeasibilityConditions  
  13.2.2 Revised Simplex Algorithm  
 13.3 Bounded-Variables Algorithm   
 13.4 Duality  
  13.4.1 Matrix Definition of the Dual Problem  
  13.4.2 Optimal Dual Solution   
 13.5 Parametric Linear Programming  
  13.5.1 Parametric Changes in C  
  13.5.2 Parametric Changes in b  
 References  
Chapter 14 Review of Basic Probability  
 14.1 Laws of Probability  
  14.1.1 Addition Law of Probability  
  14.1.2 Conditional Law of Probability  
 14.2 Random Variables and Probability Distributions  
 14.3 Expectation of a Random Variable  
  14.3.1 Mean and Variance (Standard Deviation) of a Random Variable  
  14.3.2 Mean and Variance of Joint Random Variables  
 14.4 Four Common Probability Distributions  
  14.4.1 Binomial Distribution  
  14.4.2 Poisson Distribution  
  14.4.3 Negative Exponential Distribution  
  14.4.4 Normal Distribution  
 14.5 Empirical Distributions  
 References  
Chapter 15 Probabilistic Inventory Models  
 15.1 Continuous Review Models  
  15.1.1 “Probabilitized” EOQ Model  
  15.1.2 Probabilistic EOQ Model  
 15.2 Single-Period Models  
  15.2.1 No-Setup Model (Newsvendor Model)  
  15.2.2 Setup Model (s-S Policy)  
 15.3 Multiperiod Model  
 References  
Chapter 16 Simulation Modeling  
 16.1 Monte Carlo Simulation  
 16.2 Types of Simulation  
 16.3 Elements of Discrete-Event Simulation  
  16.3.1 Generic Definition of Events  
  16.3.2 Sampling from Probability Distributions  
 16.4 Generation of Random Numbers 
 16.5 Mechanics of Discrete Simulation  
  16.5.1 Manual Simulation of a Single-Server Model  
  16.5.2 Spreadsheet-Based Simulation of the Single-Server Model  
 16.6 Methods for Gathering Statistical Observations  
  16.6.1 Subinterval Method  
  16.6.2 Replication Method  
  16.6.3 Regenerative (Cycle) Method  
 16.7 Simulation Languages  
 References  
Chapter 17 Markov Chains  
 17.1 Definition of a Markov Chain  
 17.2 Absolute and n-Step Transition Probabilities  
 17.3 Classification of the States in a Markov Chain  
 17.4 Steady-State Probabilities and Mean Return Times of Ergodic Chains  
 17.5 First Passage Time  
 17.6 Analysis of Absorbing States  
 References  
Chapter 18 Classical Optimization Theory  
 18.1 Unconstrained Problems  
  18.1.1 Necessary and Sufficient Conditions  
  18.1.2 The Newton-Raphson Method  
 18.2 Constrained Problems  
  18.2.1 Equality Constraints  
  18.2.2 Inequality Constraints-Karush-Kuhn-Tucker (KKT)Conditions  
 References  
Chapter 19 Nonlinear Progra mming Algorivthms  
 19.1 Unconstrained Algorithms  
  19.1.1 Direct Search Method  
  19.1.2 Gradient Method  
 19.2 Constrained Algorithms 
  19.2.1 Separable Programming  
  19.2.2 Quadratic Programming  
  19.2.3 Chance-Constrained Programming  
  19.2.4 Linear Combinations Method  
 References  
Chapter 20 Additional Network and LP Algorithms  
 20.1 Minimum-Cost Capacitated Flow Problem  
  20.1.1 Network Representation  
  20.1.2 Linear Programming Formulation  
  20.1.3 Capacitated Network Simplex Algorithm  
 20.2 Decomposition Algorithm  
 20.3 Karmarkar Interior-Point Method  
  20.3.1 Basic Idea of the Interior-Point Algorithm  
  20.3.2 Interior-Point Algorithm  
 References  
Chapter 21 Forecasting Models  
 21.1 Moving Average Technique  
 21.2 Exponential Smoothing  
 21.3 Regression  
 References  
Chapter 22 Probabilistic Dynamic Programming  
 22.1 A Game of Chance   
 22.2 Investment Problem  
 22.3 Maximization of the Event of Achieving a Goal  
 References  
Chapter 23 Markovian Decision Process  
 23.1 Scope of the Markovian Decision Problem  
 23.2 Finite-Stage Dynamic Programming Model  
 23.3 Infinite-Stage Model  
  23.3.1 Exhaustive Enumeration Method  
  23.3.2 Policy Iteration Method Without Discounting  
  23.3.3 Policy Iteration Method with Discounting  
 23.4 Linear Programming Solution  
 References  
Chapter 24 Case Analysis  
 Case 1: Airline Fuel Allocation Using Optimum Tankering  
 Case 2: Optimization of Heart Valves Production  
 Case 3: Scheduling Appointments at Australian Tourist Commission Trade Events
 Case 4: Saving Federal Travel Dollars  
 Case 5: Optimal Ship Routing and Personnel Assignment for Naval Recruitment in Thailand   
 Case 6: Allocation of Operating Room Time in Mount Sinai Hospital  
 Case 7: Optimizing Trailer Payloads at PFG Building Glass  
 Case 8: Optimization of Crosscutting and Log Allocation at Weyerhaeuser  
 Case 9: Layout Planning for a Computer Integrated Manufacturing (CIM) Facility Case 10: Booking Limits in Hotel Reservations  
 Case 11: Casey's Problem: Interpreting and Evaluating a New Test  
 Case 12: Ordering Golfers on the Final Day of Ryder Cup Matches  
 Case 13: Inventory Decisions in Dell's Supply Chain  
 Case 14: Analysis of an Internal Transport System in a Manufacturing Plant 
 Case 15: Telephone Sales Manpower Planning at Qantas Airways  
Appendix B Statistical Tables  
Appendix C Partial Solutions to Answers Problems  
Appendix D Review of Vectors and Matrices  
 D.1 Vectors  
  D.1.1 Definition of a Vector  
  D.1.2 Addition (Subtraction) of Vectors  
  D.1.3 Multiplication of Vectors by Scalars  
  D.1.4 Linearly Independent Vectors  
 D.2 Matrices  
  D.2.1 Definition of a Matrix  
  D.2.2 Types of Matrices  
  D.2.3 Matrix Arithmetic Operations  
  D.2.4 Determinant of a Square Matrix  
  D.2.5 Nonsingular Matrix  
  D.2.6 Inverse of a Nonsingular Matrix  
  D.2.7 Methods of Computing the Inverse of Matrix  
  D.2.8 Matrix Manipulations Using Excel  
 D.3 Quadratic Forms  
 D.4 Convex and Concave Functions  
 Problems  
 Selected References  
Appendix E Case Studies

本目录推荐