本书是具有鲜明特点的专著兼教材,其创新之处是把赋范空间、赋准范空间和赋拟范空间结合起来深入讨论(特别是创造出了许多有趣的反例说明它们的差异点),这样的做法不仅是理论上、并且也是实际问题的需要。本书共有两部分,第一部分的主要内容可以作为泛函分析的入门教材,我们在前两章介绍和讨论了赋范、赋准范和赋拟范空间及其上的线性算子的基本概念,第三章介绍和讨论了所谓“线性泛函的三大原理”,即Hahn— Banach定理、开映像与闭图像定理以及共鸣定理(一致有界原理),最后介绍了Hilbert空间的基本内容。本书的第二部分以及第一部分全部(特别是一些*号部分和附录)则可作为高校的相关研究生教材,在第二部分中,除了介绍著名的可分空间(改范) 等价于C[a,b]以及严格凸空间外,还介绍和讨论了(作为上述空间推广的)拓扑向量空间的基本而有用的一些概念和特性。本书既可作为泛函分析(本科生和研究生)的教材,也可作为需要此专门知识的读者的一本参考书,本书含有较多的例、反例和注记,并在每章后均附有习题(并在最后附有提示),且在最后附有参考材料,对于自学者以及启发和培养创造思维也是很有利的。有别于中外同类书、具有鲜明特色的优秀的泛函分析教材饱含和聚集了作者几十年教学心得和科研成果的力作大量的具有独创性的反例和注释,配有丰富的习题及其提示有利于启发和培养读者创造性思维的参考书