注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学微分流形与黎曼几何(英文版·第2版修订版)

微分流形与黎曼几何(英文版·第2版修订版)

微分流形与黎曼几何(英文版·第2版修订版)

定 价:¥59.00

作 者: (美)William M.Boothby
出版社: 人民邮电出版社
丛编项: 图灵原版数学·统计学系列
标 签: 几何及拓扑

购买这本书可以去


ISBN: 9787115165992 出版时间: 2007-10-01 包装: 平装
开本: 小16开 页数: 419页 字数:  

内容简介

  这是一本非常好的微分流形入门书。全书从一些基本的微积分知识入手,然后一点点深入介绍,主要内容有:流形介绍、多变量函数和映射、微分流形和子流形、流形上的向量场、张量和流形上的张量场、流形上的积分法、黎曼流形上的微分法以及曲率。书后有难度适中的习题,全书配有很多精美的插图。 本书非常适合初学者阅读,可作为数学系、物理系、机械系等理工科高年级本科生和研究生的教材。作者简介:William M.Boothby华盛顿大学圣路易斯分校数学系荣休教授。于1949年在密歇根大学获得博士学位,师出拓扑学大师、沃尔夫奖得主Hassler Whitney门下。除在华盛顿大学任教40余年外,他还在世界各地讲授微分流形、深受学生爱戴。

作者简介

暂缺《微分流形与黎曼几何(英文版·第2版修订版)》作者简介

图书目录

I. Introduction to Manifolds
l.Preliminary Comments on Rn 1
2.Rn and Euclidean Space 4
3.Topological Manifolds 6
4.Further Examples of Manifolds. Cutting and Pasting 11
5.Abstract Manifolds. Some Examples 14
II. Functions of Several Variables and Mappings
1.Differentiability for Functions of Several Variables 20
2.Differentiability of Mappings and Jacobians 25
3.The Space of Tangent Vectors at a Point of Rn 29
4.Another Definition of Ta(Rn) 32
5.Vector Fields on Open Subsets of Rn 36
6.The Inverse Function Theorem 41
7.The Rank of a Mapping 46
III. Differentiable Manifolds and Submanifolds
1.The Definition of a Differentiable Manifold 52
2.Further Examples 59
3.Differentiable Functions and Mappings 65
4.Rank of a Mapping, Immersions 68
5.Submanifolds 74
6.Lie Groups 80
7.The Action of a Lie Group on a Manifold. Transformation Groups 87
8.The Action of a Discrete Group on a Manifold 93
9.Covering Manifolds 98
IV. Vector Fields on a Manifold
1.The Tangent Space at a Point of a Manifold 104
2.Vector Fields 113
3.One-Parameter and Local One-Parameter Groups Acting on a Manifold 119
4.The Existence Theorem for Ordinary Differential Equations 127
5.Some Examples of One-Parameter Groups Acting on a Manifold 135
6.One-Parameter Subgroups of Lie Groups 142
7.The Lie Algebra of Vector Fields on a Manifold 146
8.Frobenius's Theorem 153
9.Homogeneous Spaces 160
V. Tensors and Tensor Fields on Manifolds
1.Tangent Covectors 171
    Covectors on Manifolds 172
    Covector Fields and Mappings 174
2.Bilinear Forms. The Riemannian Metric 177
3.Riemannian Manifolds as Metric Spaces 181
4.Partitions of Unity 186
    Some Applications of the Partition of Unity 188
5.Tensor Fields 192
    Tensors on a Vector Space 192
    Tensor Fields 194
    Mappings and Covariant Tensors 195
    The Symmetrizing and Alternating Transformations 196
6.Multiplication of Tensors 199
    Multiplication of Tensors on a Vector Space 199
    Multiplication of Tensor Fields 201
    Exterior Multiplication of Alternating Tensors 202
    The Exterior Algebra on Manifolds 206
7.Orientation of Manifolds and the Volume Element 207
8.Exterior Differentiation 212
    An Application to Frobenius's Theorem 216
VI. Integration on Manifolds
1.Integration in R" Domains of Integration 223
    Basic Properties of the Riemann Integral 224
2.A Generalization to Manifolds 229
    Integration on Riemannian Manifolds 232
3.Integration on Lie Groups 237
4.Manifolds with Boundary 243
5.Stokes's Theorem for Manifolds 251
6.Homotopy of Mappings. The Fundamental Group 258
    Homotopy of Paths and Loops. The Fundamental Group 259
7.Some Applications of Differential Forms. The de Rham Groups 265
    The Homotopy Operator 268
8.Some Further Applications of de Rham Groups 272
    The de Rham Groups of Lie Groups 276
9.Covering Spaces and Fundamental Group 280
VII. Differentiation on Riemannian Manifolds
l.Differentiation of Vector Fields along Curves in Rn 289
    The Geometry of Space Curves 292
    Curvature of Plane Curves 296
2.Differentiation of Vector Fields on Submanifolds of Rn 298
    Formulas for Covariant Derivatives 303
    ▽xpY and Differentiation of Vector Fields 305
3.Differentiation on Riemannian Manifolds 308
    Constant Vector Fields and Parallel Displacement 314
4.Addenda to the Theory of Differentiation on a Manifold 316
    The Curvature Tensor 316
    The Riemannian Connection and Exterior Differential Forms 319
5.Geodesic Curves on Riemannian Manifolds 321
6.The Tangent Bundle and Exponential Mapping. Normal Coordinates 326
7.Some Further Properties of Geodesics 332
8.Symmetric Riemannian Manifolds 340
9.Some Examples 346
VIII. Curvature
1.The Geometry of Surfaces in E3 355
    The Principal Curvatures at a Point of a Surface 359
2.The Gaussian and Mean Curvatures of a Surface 363
    The Theorema Egregium of Gauss 366
3.Basic Properties of the Riemann Curvature Tensor 371
4.Curvature Forms and the Equations of Structure 378
5.Differentiation of Covariant Tensor Fields 384
6.Manifolds of Constant Curvature 391
    Spaces of Positive Curvature 394
    Spaces of Zero Curvature 396
    Spaces of Constant Negative Curvature 397
REFERENCES  403
INDEX 41 1

本目录推荐