本书广泛吸取统计学、神经网络、数据挖掘、机器学习、人工智能、群智能计算等学科的先进思想和理论,将其应用到模式识别领域中;以一种新的体系,系统、全面地介绍模式识别的理论、方法及应用。全书共分为13章,内容包括:模式识别概述,特征的选择与提取,模式相似性测度,贝叶斯分类器设计,判别函数分类器设计,神经网络分类器设计(BP神经网络、径向基函数冲经网络、自组织竞争神经网络、慨率神经网络、对向传播神经网络、反馈型神经网络),决策树分类器,粗糙集分类器,聚类分析,模糊聚类分析,遗传算法聚类分析,蚁群算法聚类分析,粒子群算法聚类分析。本书内容新颖,实用性强,理论与实际应用密切结合,以手写数字识别为应用实例,介绍理论运用于实践的实现步骤及相应的Matlab代码,为广大研究工作者和工程技术人员对相关理论的应用提供借鉴。本书可作为高等院校计算机工程、信息工程、生物医学工程、智能机器人学、工业自动化、模式识别等学科本科生、研究生的教材或教学参考书,亦可供相关工程技术人员参考。附光盘