Chapter 3-- Random Numbers
3.1. Introduction
3.2. Generating Uniform Random Numbers
3.2.1. The Linear Congruential Method
3.2.1.1. Choice of modulus
3.2.1.2. Choice of multiplier
3.2.1.3. Potency
3.2.2. Other Methods
3.3. Statistical Tests
3.3.1. General Test Procedures for Studying Random Data
3.3.2. Empirical Tests
3.3.3. Theoretical Tests
3.3.4. The Spectral Test
3.4. Other Types of Random Quantities
3.4.1. Numerical Distributions
3.4.2. Random Sampling and Shuffling
3.5. What Is a Random Sequence?
Chapter 4- Arithmetic
4.1. Poitional Number Systems
4.2. Floating Point Arithmetic
4.2.1. Singl-Precision Calculations
4.2.2. Accuracy of Floating Point Arithnletic
4.2.3. Double -Preision Calculations
4.2.4. Distribution of Floating Point Numbers
4.3. Multiple Preision Arithmetic
4.3.1. The Classical Algorithms
4.3.3. How Fast Can We Multiply?
4.5. Rational Arithmetic
4.5.1. Fractinns
4.5.2. The Greatest Common Divisor
4.5.3. Analysis of Euclid's Algorithm
4.5.4. Factoring into Primes3.6. Summary
4.6. Polynomial Arithmetic
4.6.1. Division of Polynomials
4.6.2. Factorization of Polynomials
4.6.3. Evaluation of Powers
4.6.4. Evaluation of Polynomials
4.7. Manipulation of Power Series
Answers to Exercises
Appendix A - Tables of Numerical Quantities
1.Fundamental Constants (decimal)
2.Fundamental Constants (octal)
3.Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers
Appendix B--index to Notations
Index and Glossary