注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学统计力学(第二版)

统计力学(第二版)

统计力学(第二版)

定 价:¥96.00

作 者: (德国)(Schwabl.F)施瓦布 编
出版社: 科学出版社
丛编项: 国外物理名著系列
标 签: 理论力学(一般力学)

购买这本书可以去


ISBN: 9787030209412 出版时间: 2008-02-01 包装: 平装
开本: 32 页数: 577 pages 字数:  

内容简介

  本书是经典的《统计力学》的修订版,包括平衡和非平衡统计物理的基本理论。除了在微正则密度矩阵单一假设下的平衡统计和热力学的演绎推理外,本书还重点论述了非平衡统计中的一些重要的原理。书中的计算都提供了详细的推导过程,每章后面附有习题,可以帮助学生巩固他们对教材的理解。除基础知识外,本书还论述了本领域的普适性及其应用的多样性,还包括一些新的领域,如重正化群,逾渗,运动的随机方程及其在临界动力学中的应用,动理学理论等,同时还讨论了不可逆论的基本原理。本书适用于掌握基本的量子力学知识的读者,可供物理学和相关理工科专业的高年级学生阅读参考。

作者简介

暂缺《统计力学(第二版)》作者简介

图书目录

1.Basic Principles
 1.1 Introduction
 1.2 A Brief Excursion into Probability Theory
  1.2.1 Probability Density and Characteristic.Functions
  1.2.2 The Central Limit Theorem.
 1.3 Ensembles in Classical Statistics.
  1.3.1 Phase Space and Distribution Functions
  1.3.2 The Liouville Equation
 1.4 Quantum Statistics
  1.4.1 The Density Matrix for Pure and Mixed Ensembles
  1.4.2 The Von Neumann Equation.
 *1.5 Additional Remarks
  *1.5.1 The Binomial and the Poisson Distributions
  *1.5.2 Mixed Ensembles and the Density Matrix of Subsystems
 Problems
2.Equilibrium Ensembles
 2.1 Introductory Remarks
 2.2 Microcanonical Ensembles
  2.2.1 Microcanonical Distribution Functions and Density Matrices
  2.2.2 The Classical Ideal Gas
  *2.2.3 Quantum.mechanical Harmonic Oscillators and Spin Systems
 2.3 Entropy
  2.3.1 General Definition
  2.3.2 An Extremal Property of the Entropy
  2.3.3 Entropy ofthe Microcanonical Ensemble
 2.4 Temperature and Pressure
  2.4.1 Systems in Contact:the Energy Distribution Function Definition of the Temperature
  2.4.2 0n the Widths of the Distribution Functions of Macroscopic Quantities
  2.4.3 External Parameters:Pressure
 2.5 Properties of Some Non-interacting Systems
  2.5.1 The Ideal Gas
  *2.5.2 Non-interacting Quantum Mechanical Harmonic Oscillators and Spins
 2.6 The Canonical Ensemble
  2.6.1 The Density Matrix
  2.6.2 Examples:the Maxwell Distribution and the Barometric Pressure Formula
  2.6.3 The Entropy of the Canonical Ensemble and Its Extremal Values
  2.6.4 The Virial Theorem and the Equipartition Theorem
  2.6.5 Thermodynamic Quantities in the Canonical Ensemble
  2.6.6 Additional Properties of the Entropy
 2.7 The Grand Canonical Ensemble
  2.7.1 Systems with Particle Exchange
  2.7.2 The Grand Canonical Density Matrix
  2.7.3 Thermodynamic Quantities
  2.7.4 The Grand Partition Function for the Classical Ideal Gas
  *2.7.5 The Grand Canonical Density Matrix in Second Quantization
 Problems
3.Thermodynamics
 3.1 Potentials and LaWS of Equilibrium Thermodynamics
  3.1.1 Definitions
  3.1.2 The Legendre Transformation
  3.1.3 The Gibbs-Duhem Relation in Homogeneous Systems
 3.2 Derivatives of Thermodynamic Quantities
  3.2.1 Definitions
  3.2.2 Integrability and the Maxwell Relations
  3.2.3 Jacobians
  3.2.4 Examples
 3.3 Fluctuations and Thermodynamic Inequalities.
  3.3.1 Fluctuations
  3.3.2 Inequalities
 3.4 Absolute Temperature and Empirical Temperatures
 3.5  Thermodynamic Processes
  3.5.1 Thermodynamic Concepts
  3.5.2 The Irreversible Expansion of a Gas the Gay-Lussac Experiment
  3.5.3 The Statistical Foundation of Irreversibility
  3.5.4 Reversible Processes
  3.5.5 The Adiabatic Equation
 ……
3.Thermodynamics
4.Ideal Quantum Gases
5.Real Gases,Liquids,and Solutions
6.Magnetism
7.Phase Transitions,Renormalization Group Theroy,and Percolation
8.Brownian Motion,Equations of Motion and the Fokker-Planck Equations
9.The Boltzmann Equation
10.Irreversibilty and the Approach to Equilibrium
Appendix
Subject Index

本目录推荐