注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学计算共形几何(英文版)

计算共形几何(英文版)

计算共形几何(英文版)

定 价:¥49.00

作 者: 顾险峰、丘成桐
出版社: 高等教育出版社
丛编项:
标 签: 英文版

购买这本书可以去


ISBN: 9787040231892 出版时间: 2008-01-01 包装: 精装
开本: 16开 页数: 276 字数:  

内容简介

  The launch of this Advanced Lectures in Mathematics series is aimed at keepingmathematicians informed of the latest developments in mathematics, as well asto aid in the learning of new mathematical topics by students all over the world.Each volume consists of either an expository monograph or a collection of signifi-cant introductions to important topics. This series emphasizes the history andsources of motivation for the topics under discussion, and also gives an overviewof the current status of research in each particular field. These volumes are thefirst source to which people will turn in order to learn new subjects and to dis-cover the latest results of many cutting-edge fields in mathematics.

作者简介

暂缺《计算共形几何(英文版)》作者简介

图书目录

Introduction
 1.1 Overview of Theories
  1.1.1 RiemannMapping
  1.1.2 Riemann Uniformization
  1.1.3 Shape Space
  1.1.4 General Geometric Structure
 1.2 Algorithms for Computing Conformal Mappings
 1.3 Applications
  1.3.1 Computer Graphics
  1.3.2 Computer Vision
  1.3.3 Geometric Modeling
  1.3.4 Medical Imaging
 Further Readings
Part I Theories
 2 Homotopy Group
  2.1 Algebraic Topological Methodology
  2.2 Surface Topological Classification
  2.3 Homotopy of Continuous Mappings
  2.4 Homotopy Group
  2.5 Homotopy Invariant
  2.6 Covering Spaces
  2.7 Group Representation
  2.8 Seifert-van Kampen Theorem
  Problems
 3 Homology and Cohomology
  3.1 Simplicial Homology
\t3.1.1 Simplicial Complex
\t3.1.2 Geometric Approximation Accuracy
\t3.1.3 Chain Complex
\t3.1.4 Chain Map and Induced Homomorphism
\t3.1.5 Simplicial Map
\t3.1.6 Chain Homotopy \t
\t3.1.7 Homotopy Equivalence
\t3.1.8 Relation Between Homology Group and Homotopy Grou
\t3.1.9 Lefschetz Fixed Point
\t3.1.10 Mayer-Vietoris Homology Sequence
\t3.1.11 Tunnel Loop and Handle Loop
  3.2 Cohomology
\t3.2.1 Cohomology Group
\t3.2.2 Cochain Map
\t3.2.3 Cochain Homotopy
  Problems
 4 Exterior Differential Calculus
  4.1 Smooth Manifold
  4.2 Differential Forms
  4.3 Integration
  4.4 Exterior Derivative and Stokes Theorem
  4.5 De Rham Cohomology Group
  4.6 Harmonic Forms
  4.7 Hodge Theorem
  Problems
 5 Differential Geometry of Surfaces
  5.1 Curve Theory
  5.2 Local Theory of Surfaces
   5.2.1 Regular Surface
\t5.2.2 First Fundamental Form
\t5.2.3 Second Fundamental Form
\t5.2.4 Weingarten Transformation
  5.3 Orthonormal Movable Frame
\t5.3.1 Structure Equation
  5.4 Covariant Differentiation
\t5.4.1 Geodesic Curvature
  5.5 Gauss-Bonnet Theorem
  5.6 Index Theorem of Tangent Vector Field
  5.7 Minimal Surface
\t5.7.1 Weierstrass Representation
\t5.7.2 Costa Minimal Surface
  Problems
 6 Riemann Surface
  6.1 Riemann Surface
  6.2 Riemann Mapping Theorem
\t6.2.1 Conformal Module
\t6.2.2 Quasi-Conformal Mapping
\t6.2.3 Holomorphic Mappings
  6.3 Holomorphic One-Forms
  6.4 Period Matrix
  6.5 Riemann-Roch Theorem
  6.6 Abel Theorem
  6.7 Uniformization
  6.8 Hyperbolic Riemann Surface
  6.9 Teichmiiller Space
\t6.9.1 Quasi-Conformal Map
\t6.9.2 Extremal Quasi-Conformal Map
  6.10 Teichm011er Space and Modular Space  
\t6.10.1 Fricke Space Model
\t6.10.2 Geodesic Spectrum
  Problems
 ……
Part II Algorithms
A Major Algorithms
B Acknowledgement
Reference
Index

本目录推荐