注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学孤子理论中的直接方法

孤子理论中的直接方法

孤子理论中的直接方法

定 价:¥29.00

作 者: (日本)広田良吾 著;王红艳、李春霞、赵俊霄 等译
出版社: 清华大学出版社
丛编项:
标 签: 微积分

购买这本书可以去


ISBN: 9787302173786 出版时间: 2008-01-01 包装: 精装
开本: 32 页数: 195 字数:  

内容简介

  关于孤子(也称孤立子)理论中双线性方程的研究,国际上十分活跃,本书主要介绍处理双线性方程的技巧——“直接方法”。作者结合自己多年的研究成果,细致深入地阐述了求解非线性偏微分方程的精确解的过程,“广田方法”的要点,以及如何用Pfaff式统一显式表示多孤子解,由此提出了孤子方程可以看成Pfaff式恒等式的新观点。全书共分4章。第1章详细地描述“直接方法”的要点,以及用“直接方法”求解偏微分方程精确解的过程。第2章引入需要使用的数学工具,特别是行列式和Pfaff式理论,通过实例,深入浅出地介绍这些方面所涉及的技巧。第3章从直接方法的角度,讨论孤立子方程的数学结构。第4章详细讨论双线性Backlund变换。本书可供高等院校和科研机构的数学、物理、力学、光学等专业高年级大学生、研究生和教师阅读,也可供从事非线性科学、理论物理、数学物理和工程等方面的科技人员参考。

作者简介

暂缺《孤子理论中的直接方法》作者简介

图书目录

前言
第1章 孤子方程的双线性化
1.0 孤立波和孤子
1.1 非线性和色散
1.2 非线性微分方程的解
1.3 非线性微分方程的线性化
1.4 直接方法的本质
1.5 一种新的微分算子,D-算子
1.6 非线性微分方程的双线性化
1.7 双线性方程的解
1.8 双线性形式到非线性形式的变换
第2章 行列式和Pfaff式
2.0 引言
2.1 Pfaft式
2.2 外代数
2.3 一般行列式和Wronski行列式的Pfaff式表示
2.4 行列式的Laplace展开式和Plucker关系式
2.5 行列式的Jacobi恒等式
2.6 特殊行列式
2.7 Pfaff式恒等式
2.8 Pfaff式(a1,a2,1,2,…,2n)的展开公式
2.9 Pfaff式的加法公式
2.10 Pfaff式的微分公式
第3章 孤子方程的结构
3.0 引言
3.1 KP方程:Wronski行列式解
3.2 KP方程:Gram行列式解
3.3 BKP方程:Pfaff式解
3.4 耦合KP方程:Wronski型的Pfaff式解
3.5 耦合KP方程:Gram型的Pfaff式解
3.6 二维Toda晶格方程:Wronski行列式解
3.7 二维Toda晶格方程:Gram行列式解
3.8 二维Toda分子方程:双向Wronski行列式解
3.9 二维Toda分子方程:双重Wronski行列式解
第4章 Backlund变换
4.0 什么是Backlund变换?
4.1 KdV-型的双线性方程的Backlund变换
4.2 KP方程的Backlund变换
4.3 BKP方程的Backlund变换
4.4 变形BKP方程的解
4.5 二维Toda方程的Backlund变换
4.6 二维变形Toda方程的解
后记
参考文献
索引

本目录推荐