《高等代数中的典型问题与方法》是为正在学习高等代数的读者、正在复习高等代数准备报考研究生的读者以及从事这方面教学工作的年轻教师编写的。《高等代数中的典型问题与方法》与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。《高等代数中的典型问题与方法》全面、系统地总结和归纳了高等代数中问题的基本类型、每种类型的基本方法,对每种方法先概括要点,再选取典型而有一定难度的例题,逐层剖析。对一些较难理解的问题,在适当的章节做了专题研究,进行了较深入的探讨和总结,如:线性变换的对角化、矩阵的分解等问题,以消除读者长期以来对其抽象问题在理解上含糊不清的疑虑,从而更深入地领会问题。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧氏空间。《高等代数中的典型问题与方法》大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。