文本分类和聚类技术是应信息检索和查询需要而出现的自然语言处理领域的重要研究课题。文本分类和聚类问题中的特征选择和抽取技术、文本特征表示、聚类方法的选择和实现以及分类方法的选择和实现,都将对文本分类和聚类结果产生极大影响。针对文本分类和聚类中的文本数据的高维性和稀疏性、同义词和近义词问题、效率与精确度之间的搭配问题以及参数优化问题,《基于遗传算法的文本分类及聚类研究》提出了使用遗传算法与传统分类和聚类方法相结合的思路来进行处理,充分利用了遗传算法的全局优化能力和传统分类及聚类算法的专业知识,有效地提高了文本分类和聚类的效率与精度。《基于遗传算法的文本分类及聚类研究》可作为自然语言处理专业和相关专业人员自学参考书。