《基于知识的聚类:从数据到信息粒》首先对模糊聚类和粒计算这一领域进行介绍和讨论。然后,作者深入研究了基于逻辑的神经元和神经网络。《基于知识的聚类:从数据到信息粒》的核心部分包括9章,在其中呈现和分析了众多不同的基于知识的聚类的方法。基于知识的聚类展示的是如何设计一个导航平台,以使信息探寻者能理解和较好的应用种类繁多的数据集。比模糊聚类走得更远,作者展示了基于知识的聚类这一有前景的新范例是如何揭示更有意义的数据结构,并使社会更好地处理日益增长的数据和信息流。通过这《基于知识的聚类:从数据到信息粒》,读着能理解基于知识聚类的基础和与其相关联的算法,学会将他们自己的知识应用到系统建模和设计中去。《基于知识的聚类:从数据到信息粒》的第三部分致力于模型的研究,首先讨论超盒结构,然后讨论粒映射和语言模型。《基于知识的聚类:从数据到信息粒》提供了理解和掌握这一令人振奋的新领域所需要的所有工具和指导:◆说明核心概念的众多实例◆为读者提供传递经验的可重复实验◆为复杂算法和建模奠定基础的先决条件的全面涵盖◆每章后面强调理解内容所必须的关急键点的总结◆通向专题探究的进一步途径的参考文献和泛的参考书目《基于知识的聚类:从数据到信息粒》是对聚类、模糊聚类、无监督学习、神经网络、模糊集、模式识别和系统建模感兴趣的研究人员、专家及学生的必读之物。有了作者对掌握必备知识的强调,以及精心构建的实例和实验,读者将成功地使自己成为基于知识聚类的专家。WITOLDPEDRYCZ,博士,加拿大阿尔伯塔大学教授,加拿大首席专家。他还任职于波兰科学院系统研究所(波兰、华沙)。Pedrycz博士是IEEEFellow,已经编写了9部专著,编辑了9卷书籍,在计算智能、粒计算、模式识别、定量软件工程和数据挖掘方面发表了很多论文。