Introduction
Chapter 1. Preliminaries
1.1. Singularities
1.2. On Numerical Geometry of Cycles
1.3. On the Mori Minimal Model Program
1.4. Results on Minimal Models in Dimension Three
Chapter 2. Basic Properties of Fano Varieties
2.1. Definitions, Examples and the Simplest Properties
2.2. Some General Results
2.3. Existence of Good Divisors in the Fundamental Linear System
2.4. Base Points in the Fundamental Linear System
Chapter 3. Del Pezzo Varieties and Fano Varieties of Large Index
3.1. On Some Preliminary Results of Fujita
3.2. Del Pezzo Varieties. Definition and Preliminary Results
3.3. Nonsingular del Pezzo Varieties. Statement of the Main Theorem and Beginning of the Proof
3.4. Del Pezzo Varieties with Picard Number p = 1.
Continuation of the Proof of the Main Theorem
3.5. Del Pezzo Varieties with Picard Number p ≥ 2.
Conclusion of the Proof of the Main Theorem
Chapter 4. Fano Threefolds with p = 1
4.1. Elementary Rational Maps: Preliminary Results
4.2. Families of Lines and Conics on Fano Threefolds
4.3. Elementary Rational Maps with Center along a Line
4.4. Elementary Rational Maps with Center along a Conic
4.5. Elementary Rational Maps with Center at a Point
4.6. Some Other Rational Maps
Chapter 5. Fano Varieties of Coindex 3 with p = 1:
The Vector Bundle Method
5.1. Fano Threefolds of Genus 6 and 8: Gushel's Approach
5.2. A Review of Mukai's Results on the Classification of Fano Manifolds of Coindex 3
Chapter 6. Boundedness and Rational Connectedness of Fano Varieties
6.1. Uniruledness
6.2. Rational Connectedness of Fano Varieties
Chapter 7. Fano Varieties with p ≥ 2
7.1. Fano Threefolds with Picard Number p ≥ 2 (Survey of Results of Mori and Mukai
7.2. A Survey of Results about Higher-dimensional Fano Varieties with Picard Number p ≥ 2
Chapter 8. Rationality Questions for Fano Varieties I
8.1. Intermediate Jacobian and Prym Varieties
8.2. Intermediate Jacobian: the Abel-Jacobi Map
8.3. The Brauer Group as a Birational Invariant
Chapter 9. Rationality Questions for Fano Varieties II
9.1. Birational Automorphisms of Fano Varieties
9.2. Decomposition of Birational Maps in the Context of Mori Theory
Chapter 10. Some General Constructions of Rationality and Unirationality
10.1. Some Constructions of Unirationality
10.2. Unirationality of Complete Intersections
10.3. Some General Constructions of Rationality
Chapter 11. Some Particular Results and Open Problems
11.1. On the Classification of Three-dimensional -Fano Varieties
11.2. Generalizations
11.3. Some Particular Results
11.4. Some Open Problems
Chapter 12. Appendix: Tables
12.1. Del Pezzo Manifolds
12.2. Fano Threefolds with p = 1
12.3. Fano Threefolds with p = 2
12.4. Fano Threefolds with p = 3
12.5. Fano Threefolds with p = 4
12.6. Fano Threefolds with p ≥ 5
12.7. Fano Fourfolds of Index 2 with p ≥ 2
12.8. Toric Fano Threefolds
References
Index