本书的创立者是Vladimir N. Vapnik。统计学习理论是研究利用经验数据进行机器学习的一种一般理论,属于计算机科学、模式识别和应用统计学相交叉与结合的范畴。统计学习理论的基本内容诞生于20世纪60~70年代,到90年代中期发展到比较成熟并受到世界机器学习界的广泛重视,其核心内容反映在Vapnik的两部重要著作中,本书即是其中一部,另一部是“The Nature of Statistical Learning Theory”(《统计学习理论的本质》)。 由于较系统地考虑了有限样本的情况,统计学习理论与传统统计学理论相比有更好的实用性,在这一理论下发展出的支持向量机(SVM)方法以其有限样本下良好的推广能力而备受重视。 本书是对统计学习理论和支持向量机方法的全面、系统、详尽的阐述,是各领域中研究和应用机器学习理论与方法的科研工作者和研究生的重要参考资料。