Chapter 0. Prerequisites
Chapter Ⅰ Vector spaces
1. Vector spaces
2. Linear mappings
3. Subspaces and factor spaces
4. Dimension
5. The topology of a real finite dimensional vector space..
Chapter Ⅱ. Linear mappings
1. Bask properties
2. Operatiom with linear mappings
3. Linear isomorphisrns
4. Direct sum of vector spaces
5. Dual vector spaces
6. Finite dimensional vector spaces
Chapter Ⅲ. Matrices
1. Matrices and systems of linear equations
2. Multiplication of matrices
3. Basis transformation
4. Elementary transformations
Chapter Ⅳ. Determinants
1. Determinant functions
2. The determinant of a linear transformation
3. The determinant of a matrix
4. Dual determinant functions
5. The adjoint matrix
6. The characteristic polynomial
7. The trace
8. Oriented vector spaces
Chapter Ⅴ. Algebras
1. Basic properties
2. Ideals
3. Change of coefficient field of a vector space
Chapter Ⅵ. Gradations and homology
1. G-graded vector spaces
2. G-graded algebras
3. Differential spaces and differential algeras
Chapter Ⅶ. Inner product spaces
1. The inner product
2. Orthonormal bases
3. Normed determinant functions
4. Duality in an inner product space
5. Normed vector spaces
6. The algebra o'f quaternions
Chapter Ⅷ. Linear mappings of inner product spaces
1. The adjoint mapping
2.'Selfadjoint mappings
3. Orthogonal projections
4. Skew mappings
5. Isometric mappings
6. Rotations of Euclidean spaces of dimension 2, 3 and 4
7. Differentiable families of linear automorphisms
Chapter Ⅸ.Symmetric bilinear functions
1. Bilinear and quadratic functions
2. The decomposition of E
3. Pairs of symmetric bi|inear functions
4. Pseudo-Euclidean spaces
5. Linear mappings of Pseudo-Euclidean spaces
Chapter Ⅹ. Quadrics
1. Affine spaces
2. Quadrics in the affine space
3. Affine equivalence of quadrics
4. Quadrics in the Euclidean space
Chapter Ⅺ. Unitary spaces
1. Hermitian functions
2. Unitary spaces
3. Linear mappings of unitary spaces
4. Unitary mappings of the complex Diane
5. Application to Lorentz-transformations
Chapter Ⅺ. Polynomial algebra
1. Basic properties
2. Ideals and divisibility
3. Factor algebras
4. The structure of factor algebras
Chapter ⅩⅡ. Theory of a linear transformation
1. Polynomials in a linear transformation
2. Generalized eigenspaces
3. Cyclic spaces
4. Irreducible spaces
5. Application of cyclic spaces
6. Nilpotent and semisimple transformations
7. Applications to inner product spaces
Bibliography
Subject Index