人们还是采取这样的方式,把一个组合问题还原成一个代数或分析问题(对应和估计),就像面对几何一样。于是,许多极端复杂的组合细节就可忽略。复杂性是人类而不是个人面临的困难(比如癌症、天气预报等,都是复杂性在困扰人类),但是奥林匹克数学命题考察的是个人能力,所以命题者尽可以避开组合复杂性。也就是说,组合问题必可用整体对应、代数还原或局部处理这几类方法解决。如果你在做题时遇到非常棘手的困难,毫无思路,那必定是陷入了组合细节的复杂性中,而没有想到或找到前几种方法。对于命题者来说,如果所出的组合问题只有组合细节的话,那么只能用小的数字一一列举,否则就不应该是学生做的题。尤其是组合数学和初等数论中的问题,题目本身往往具有伪装性,什么是不能做的,什么是研究性质的,什么是学生的思考题,一下子看不出来。只要稍做改动,就可能由一道常规题变成世界难题了。所以,命题比解题更重要,尤其是对组合与数论的一些杂题而言。