注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学示性类

示性类

示性类

定 价:¥39.00

作 者: (美)米尔纳 著
出版社: 世界图书出版公司
丛编项:
标 签: 几何与拓扑

购买这本书可以去


ISBN: 9787510005336 出版时间: 2009-08-01 包装: 平装
开本: 24开 页数: 330 字数:  

内容简介

  The text which follows is based mostly on lectures at PrincetonUniversity in 1957. The senior author wishes to apologize for the delayin publication.The theory of characteristic classes began in the year 1935 with almostsimultaneous work by HASSLER WHITNEY in the United States andEDUARD STIEFEL in Switzerland. StiefeIs thesis, written under thedirection of Heinz Hopf, introduced and studied certain "characteristic"homology classes determined by the tangent bundle of a smooth manifold.Whitney, then at Harvard University, treated the case of an arbitrary spherebundle. Somewhat later he invented the language of cohomology theory,hence the concept of a characteristic cohomology class, and proved thebasic product theorem.

作者简介

暂缺《示性类》作者简介

图书目录

Preface
§1. Smooth Manifolds
§2. Vector Bundles
§3. Constructing New Vector Bundles Out of Old
§4. Stiefel-Whitney Classes
§5. Grassmann Manifolds and Universal Bundles
§6. A Cell Structure for Grassmann Manifolds
§7. The Cohomology Ring H*(Gn; Z/2)
§8. Existence of Stiefel-Whitney Classes
§9. Oriented Bundles and the Euler Class
§10. The Thorn Isomorphism Theorem
§11. Computations in a Smooth Manifold
§12. Obstructions
§13. Complex Vector Bundles and Complex Manifolds
§14. Chern Classes
§15. Pontrjagin Classes
§16. Chern Numbers and Pontrjagin Numbers
§17. The Oriented Cobordism Ring Ω*
§18. Thorn Spaces and Transversality
§19. Multiplicative Sequences and the Signature Theorem
§20. Combinatorial Pontrjagin Classes
Epilogue
Appendix A: Singular Homology and Cohomology
Appendix B: Bernoulli Numbers
Appendix C: Connections, Curvature, and Characteristic Classes.
Bibliography
Index

本目录推荐