Preface
§1. Smooth Manifolds
§2. Vector Bundles
§3. Constructing New Vector Bundles Out of Old
§4. Stiefel-Whitney Classes
§5. Grassmann Manifolds and Universal Bundles
§6. A Cell Structure for Grassmann Manifolds
§7. The Cohomology Ring H*(Gn; Z/2)
§8. Existence of Stiefel-Whitney Classes
§9. Oriented Bundles and the Euler Class
§10. The Thorn Isomorphism Theorem
§11. Computations in a Smooth Manifold
§12. Obstructions
§13. Complex Vector Bundles and Complex Manifolds
§14. Chern Classes
§15. Pontrjagin Classes
§16. Chern Numbers and Pontrjagin Numbers
§17. The Oriented Cobordism Ring Ω*
§18. Thorn Spaces and Transversality
§19. Multiplicative Sequences and the Signature Theorem
§20. Combinatorial Pontrjagin Classes
Epilogue
Appendix A: Singular Homology and Cohomology
Appendix B: Bernoulli Numbers
Appendix C: Connections, Curvature, and Characteristic Classes.
Bibliography
Index