第一章 背景
第二章 改进专利申请预测的研究项目
1 引言
2 动机与任务描述
3 专利申请预测方法
3.1 EPO所用的和专家咨询组报告中讨论的方法
3.2 咨询组所建议的方法
4 研究方案设计
4.1 研究项目的框架
4.2 模块A——调查法
4.3 模块B——企业层面的专利申请量
4.4 模块C——行业和国家层面的专利申请量
4.5 模块D——专利传递模型
4.6 模块E——申请数据集的时间序列模型
5 数据需求和模块关联
6 进一步的建议
6.1 研究竞赛
6.2 研究会议
第三章 从理论到时间序列
1 引言
2 理论模型
3 时间序列回归方法
4 结论
第四章 时间序列预测专利的相对精确度分析:时空分解法的优势
1 引言
2 数据描述
3 预测方法综述
4 预测方法的运用
4.1 一元ARIMA模型(年度数据)
4.2 一元ARIMA模型(月度数据)
4.3 多元ARIMA模型(年度数据)
4.4 多元ARIMA模型(月度数据)
4.5 一元DLM模型(年度数据)
4.6 一元DLM模型(月度数据)
4.7 多元DLM模型(年度数据)
4.8 多元DLM模型(月度数据)
5 相对精确度分析
6 更长时间轴范围内的预测精确度
7 结论
第五章 向欧专局申请专利的驱动力:产业途径
1 引言
2 专利和经济因素的关联
3 实证分析结果
3.1 总体模型
3.2 国家模型
3.3 产业模型
4 结论
第六章 预测专利申请的时间序列法
1 引言
2 数据描述
3 模型描述
4 应用方法和诊断的描述
5 分析的结果
5.1 平稳性
5.2 预白噪声化和交叉相关
5.3 自回归分布滞后(ADL)法的结果
5.4 向量自回归(VAR)法获得的结果
6 结论
7 附录
第七章 向欧专局申请的国际专利:总体、产业和同族申请
1 引言
2 文献综述
3 方法论和数据集
3.1 概念性框架和方法论
3.2 数据来源
4 实证分析
4.1 案例1——总体申请(按申请模式划分)
4.2 案例2——产业申请(联合集群)
4.3 案例3——同族专利申请
5 结论
附录:技术注释
第八章 微观数据实现宏观结果
1 引言
2 随机抽样调查
2.1 数据库及其性能特征
2.2 描述统计
2.3 持续与非持续申请人
2.4 讨论
3 DTl记分牌与专利数据结合
3.1 数据
3.2 描述统计
3.3 相关性
3.4 讨论
4 结论
第九章 欧洲专利局对预测方法的改进
1 引言
2 现有方法
2.1 趋势分析
2.2 传递模型
2.3 申请人调查
2.4 联合集群层面的规划
2.5 年度预测实践
2.6 讨论
3 推荐的研究方案
3.1 改进专利申请预测的研究项目(迪特马尔·哈霍夫,第二章 )
3.2 从理论到时间序列(彼得·欣利和沃尔特·帕克,第三章 )
3.3 时间序列预测专利的相对精确度分析:时空分解法的优势(奈杰尔·米德,第四章 )
3.4 向欧专局申请专利的驱动力:产业途径(克努特·布兰德,第五章 )
3.5 预测专利申请的时间序列法(格哈德·迪克塔,第六章 )
3.6 向欧专局申请的国际专利:总体,产业和同族申请(沃尔特·帕克,第七章 )
3.7 微观数据实现宏观结果(赖尔·费希,第八章 )
4 欧专局执行建议情况概述
5 预测的比较
6 欧专局预测的未来发展
7 结论
参考文献
译后记