本书在全面总结国内外多目标优化及人工免疫系统发展现状的基础上,着重介绍作者在基于人工免疫系统的多目标优化这一领域的研究成果,主要包括:免疫克隆选择多目标优化算法及其在多目标0/1背包问题、约束优化问题、动态多目标优化问题及多目标聚类中的应用,用于求解约束多目标优化的免疫记忆克隆算法,求解多目标优化的非支配近邻免疫算法,求解偏好多目标优化的偏好等级免疫记忆克隆选择算法,基于多智能体的多目标社会协同进化算法,量子免疫克隆多目标优化算法,并针对不同问题提出了多种新的算法和实现策略。《多目标优化免疫算法、理论和应用》可为计算机科学、信息科学、人工智能、自动化技术等领域从事人工免疫系统或多目标优化研究的相关专业技术人员提供参考,也可作为相关专业研究生和高年级本科生教材。