注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学等离子体物理学基础(第3版)

等离子体物理学基础(第3版)

等离子体物理学基础(第3版)

定 价:¥89.00

作 者: (巴西)比当古 著
出版社: 世界图书出版公司
丛编项:
标 签: 等离子体物理学

购买这本书可以去


ISBN: 9787510005596 出版时间: 2010-04-01 包装: 平装
开本: 24开 页数: 678 字数:  

内容简介

  《等离子体物理学基础(第3版)(英文版)》系统地介绍了等离子体物理学的基本理论及其在很多重要等离子体现象中的应用。《等离子体物理学基础(第3版)(英文版)》内容全面,结构合理,阐述清晰。作者注重表达的简洁性,没有拘泥于形式,对自学和进阶很有好处。从统计动力学讨论等离子体现象是《等离子体物理学基础(第3版)(英文版)》的一大特色。另外,作者对数学处理技巧说明得非常详细,列举了数学推导的中间步骤,这些通常是留给读者自己完成的,同时强调了这些公式的物理解释,帮助读者获得更深入的理解。书中设计的习题是内容的重要组成部分,也是进一步提高的出发点。阅读《等离子体物理学基础(第3版)(英文版)》需要经典力学和电动力学的基本知识。《等离子体物理学基础(第3版)(英文版)》适合于初次学习等离子体物理的高年级本科生和一年级研究生,同时也适用于对等离子体现象以及相关领域诸如空间物理和应用电磁学等感兴趣的研究人员。目次:简介;稳恒和均匀电磁场中的带电粒子运动;非均匀静磁场中的带电粒子运动;随时间变化的电磁场中的带电粒子运动;等离子体动力学理论基础;平均值和宏观变量;平衡态;宏观输运方程;导电流体的宏观方程;等离子体电导率和扩散;若干基本等离子体现象;磁流体动力学的简单应用;缩聚效应;自由空间电磁波;磁流体动力学波;冷等离子体波;暖等离子体波;热各向同性等离子体波;热磁化等离子体波;等离子体中粒子间相互作用;波尔兹曼和佛克尔—普朗克方程;等离子体中的输运过程;附录A:常用的矢量关系;附录B:迪卡尔坐标和曲线坐标中的常用关系;附录C:物理常数:附录D:物理单位间的换算因子;附录出部分重要的等离子体参数;附录F:若干典型等离子体的近似量极;索引。读者对象:物理,化学和材料专业的高年级本科生、研究生和相关专业的科研人员。

作者简介

暂缺《等离子体物理学基础(第3版)》作者简介

图书目录

PREFACE
1.INTRODUCTION
1. General Properties of Plasmas
1.1 Definition of a Plasma
1.2 Plasma as the Fourth State of Matter
1.3 Plasma Production
1.4 Particle Interactions and Collective Effects
1.5 Some Basic Plasma Phenomena
2. Criteria for the Definition of a Plasma
2.1 Macroscopic Neutrality
2.2 Debye Shielding
2.3 The Plasma Frequency
3. The Occurrence of Plasmas in Nature
3.1 The Sun and its Atmosphere
3.2 The Solar Wind
3.3 The Magnetosphere and the Van Allen Radiation Belts
3.4 The Ionosphere
3.5 Plasmas Beyond the Solar System
4. Applications of Plasma Physics
4.1 Controlled Thermonuclear Fusion
4.2 The Magnetohydrodynamic Generator
4.3 Plasma Propulsion
4.4 Other Plasma Devices
5. Theoretical Description of Plasma Phenomena
5.1 General Considerations on a Self-Consistent Formulation
5.2 Theoretical Approaches
Problems
2.CHARGED PARTIE MOTION IN CONSTANT AND UNIFORM UNIFORM ELECTROMAGNETIC FIELDS
1. Introduction
2. Energy Conservation
3. Uniform Electrostatic Field
4. Uniform Magnetostatic Field
4.1 Formal Solution of the Equation of Motion
4.2 Solution in Cartesian Coordinates
4.3 Magnetic Moment
4.4 Magnetization Current
5. Uniform Electrostatic and Magnetostatic Fields
5.1 Formal Solution of the Equation of Motion
5.2 Solution in Cartesian Coordinates
6. Drift Due to an External Force
Problems
3.CHARGED PARTICLE MOTION IN NONUNIFORM MAGNETOSTATIA FIELDS
1. Introduction
2. Spatial Variation of the Magnetic Field
2.1 Divergence Terms
2.2 Gradient and Curvature Terms
2.3 Shear Terms
3. Equation of Motion in the First-Order Approximation
4. Average Force Over One Gyration Period
4.1 Parallel Force
4.2 Perpendicular Force
4.3 Total Average Force
5. Gradient Drift
6. Parallel Acceleration of the Guiding Center
6.1 Invariance of the Orbital Magnetic Moment and of the Magnetic Flux
6.2 Magnetic Mirror Effect
6.3 The Longitudinal Adiabatic Invariant
7. Curvature Drift
8. Combined Gradient-Curvature Drift
Problems
4.CHARGED PARTICLE MOTION IN TIME-VARYING ELECTROMAGNETIC FIELDS
1. Introduction
2. Slowly Time-Varying Electric Field
2.1 Equation of Motion and Polarization Drift
2.2 Plasma Dielectric Constant
3. Electric Field with Arbitrary Time Variation
3.1 Solution of the Equation of Motion
3.2 Physical Interpretation
3.3 Mobility Dyad
3.4 Plasma Conductivity Dyad
3.5 Cyclotron Resonance
4. Time-Varying Magnetic Field and Space-Varying Electric Field
4.1 Equation of Motion and Adiabatic Invariants
4.2 Magnetic Heating of a Plasma
5. Summary of Guiding Center Drifts and Current Densities
5.1 Guiding Center Drifts
5.2 Current Densities
Problems
5.Summary of Guiding Center Drifts and Current Densities
Problems
1. Introduction
2. Phase Space
2.1 Single-Particle Phase Space
2.2 Many-Particle Phase Space
2.3 Volume Elements
3. Distribution Function
4. Number Density and Average Velocity
5. The Boltzmann Equation
5.1 Collisionless Boltzmann Equation
5.2 Jacobian of the Transformation in Phase Space
5.3 Effects of Particle Interactions
6. Relaxation Model for the Collision Term
7. The Vlasov Equation
Problems
6.AVERAGE VALUES AND MACROSCOPIC VARIABLES
1. Average Value of a Physical Quantity
2. Average Velocity and Peculiar Velocity
3. Flux
4. Particle Current Density
5. Momentum Flow Dyad or Tensor
6. Pressure Dyad or Tensor
6.1 Concept of Pressure
6.2 Force per Unit Area
6.3 Force per Unit Volume
6.4 Scalar Pressure and Absolute Temperature
7. Heat Flow Vector
8. Heat Flow Triad
9. Total Energy Flux Triad
……
10.Higher Moments of the Distribution Function
Problems
7. THE EQUILIBRIUM STATE
1. The Equilibrium State Distribution Function
2. The Most Probable Distribution
3. Mixture of Various Particle Species
4. Properties of the Maxwell-Boltzmann Distribution Function
5. Equilibrium in the Presence of an External Force
6. Degree of Ionization in Equilibrium and the Saha Equation
Problems
8. MACROSCOPIC TRANSPSRT EQUATIONS
1. Moments of the Boltzmann Equation
2. General Transport Equation
3. Conservation of Mass
4. Conservation of Momentum Conservation of Energy
6. The Cold Plasma Model
7. The Warm Plasma Model
Problems
9. MACROSCOPIC EQUATIONS FOR A CONDUCTING FLUID
1. Macroscopic Variables for a Plasma as a Conducting Fluid
2. Continuity Equation
3. Equation of Motion
4. Energy Equation
5. Elect rodynamic Equations for a Conducting Fluid
6. Simplified Magnetohydrodynamic Equations
Problems
10. PALSMA CONDUCTIVITY AND DIFFUSION
1. Introduction
2. The Langevin Equation
3. Linearization of the Langevin Equation
4. DC Conductivity and Electron Mobility
5. AC Conductivity and Electron Mobility
6. Conductivity with Ion Motion
7. Plasma as a Dielectric Medium
8. Free Electron Diffusion
9. Electron Diffusion in a Magnetic Field
10. Ambipolar Diffusion
11. Diffusion in a Fully Ionized Plasma
Problems
11. SOME BASIC PLASMA PHENOMENA
1. Electron Plasma Oscillations
2. The Debye Shielding Problem
3. Debye Shielding Using the Vlasov Equation
4. Plasma Sheath
5. Plasma Probe
Problems
12. SIMPLE APPLICATIONS OF MAGETOHYORODYNAMICS
1. Fundamental Equations of Magnetohydrodynamics
2. Magnetic Viscosity and Reynolds Number
3. Diffusion of Magnetic Field Lines
4. Freezing of Magnetic Field Lines to the Plasma
5. Magnetic Pressure
6. Isobaric Surfaces
7. Plasma Confinement in a Magnetic Field
Problems
13. THE PINCH EFFECT
14. ELECTROMAGNETIC WAVES IN FREE SPACE
1. Introduction
2. The Equilibrium Pinch
3. The Bennett Pinch
4. Dynamic Model of the Pinch
5. Instabilities in a Pinched Plasma Column
6. The Sausage Instability
7. The Kink Instability
8. Convex Field Configurations
Problems
15. MAGNETOHYDRODYNAMIC WAVES
1. The Wave Equation
2. Solution in Plane Waves
3. Harmonic Waves
4. Polarization
5. Energy Flow
6. Wave Packets and Group Velocity
Problems
16. WAVES IN COLD PLASMAS
1. Introduction
2. MHD Equations for a Compressible
3. Propagation Perpendicular to the Magnetic Field
4. Propagation Parallel to the Magnetic Field
5. Propagation at Arbitrary Directions
6. Effect of Displacement Current
7. Damping of MHD Waves Problems
5. Wave Propagation in Magnetized Cold Plasmas
6. Propagation Parallel to Bo
7. Propagation Perpendicular to Bo
8. Propagation at Arbitrary Directions
9. Some Special Wave Phenomena in Cold Plasmas
Problems
17. WSVES IN WARM PLASMAS
1. Introduction
2. Waves in a Fully Ionized Isotropic Warm Plasma
3. Basic Equations for Waves in a Warm Magnetoplasma
4. Waves in a Warm Electron Gas in a Magnetic Field
5. Waves in a Fully Ionized Warm Magnetoplasma
6. Summary
Problems
18. WSVES IN HOT ISOTROPIC PLASMAN
1. Introduction
2. Basic Equations
3. General Results for a Plane Wave
4. Electrostatic Longitudinal Wave in a Hot Isotropic Plasma
5. Transverse Wave in a Hot Isotropic Plasma
6. The Two-Stream Instability
7. Summary
Problems
19. WAVES IN HOT MAGNETIZED PLASMAS
1. Introduction
2. Wave Propagation Along the Magnetostatic Field in a Hot Plasma
3. Wave Propagation Across the Magnetostatic Field in a Hot Plasma
4. Summary
Problems
20. PARTICLE INTERACTIONS IN PLASMAS
1. Introduction
2. Binary Collisions
3. Dynamics of Binary Collisions
4. Evaluation of the Scattering Angle
5. Cross Sections
6. Cross Sections for the Hard Sphere Model
7. Cross Sections for the Coulomb Potential
8. Screening of the Coulomb Potential
Problems
21. THE BOL TZMANN AND THE FOKKER-PLANCK EQUATIONS
1. Introduction
2. The Boltzmann Equation
3. The Boltzmanns H Function
4. Boltzmann Collision Term for a Weakly Ionized Plasma
5. The Fokker-Planck Equation
Problems
22. TPANSPORT PROCESSES IN PLASMAS
1. Introduction
2. Electric Conductivity in a Nonmagnetized Plasma
3. Electric Conductivity in a Magnetized Plasma
4. Free Diffusion
5. Diffusion in a Magnetic Field
6. Heat Flow
Problems
APPENDIX A
Useful Vector Relations
APPENDIX B
Useful Relations in Cartesian and
in Curvilinear Coordinates
APPENDIX C
Physical Constants (MKSA)
APPENDIX D
Conversion Factors for Physical Units
APPENDIX E
Some Important Plasma Parameters
APPENDIX F
Approximate Magnitudes in Some Typical Plasmas
INDEX

本目录推荐